CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells

被引:27
|
作者
Bloomer, Hanan [1 ,2 ,3 ]
Khirallah, Jennifer [1 ]
Li, Yamin [1 ]
Xu, Qiaobing [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Tufts Univ, Sch Med, Boston, MA 02111 USA
[3] Tufts Univ, Grad Sch Biomed Sci, Boston, MA 02111 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CRISPR; Cas9; Drug delivery systems; RNP; Gene therapy; Genome editing; Epigenome editing; HUMAN HEMATOPOIETIC STEM; INDUCIBLE CRISPR-CAS9 SYSTEM; HIGHLY EFFICIENT; GENE-THERAPY; NANOPARTICLE DELIVERY; LIPID NANOPARTICLES; CAS9; PROTEIN; OFF-TARGET; T-CELLS; DRUG-DELIVERY;
D O I
10.1016/j.addr.2021.114087
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Genome editing via delivery of Cas9 ribonucleoprotein
    DeWitt, Mark A.
    Corn, Jacob E.
    Carroll, Dana
    METHODS, 2017, 121 : 9 - 15
  • [32] Efficient Genome Editing in Mammalian Cells Using a CRISPR/Cas9 Hybrid Baculoviral Vector
    Sung, Li-Yu
    Hu, Yu-Chen
    MOLECULAR THERAPY, 2014, 22 : S39 - S39
  • [33] Efficient CRISPR–Cas9 mediated multiplex genome editing in yeasts
    Laiyou Wang
    Aihua Deng
    Yun Zhang
    Shuwen Liu
    Yong Liang
    Hua Bai
    Di Cui
    Qidi Qiu
    Xiuling Shang
    Zhao Yang
    Xiuping He
    Tingyi Wen
    Biotechnology for Biofuels, 11
  • [34] Novel application of ribonucleoprotein-mediated CRISPR-Cas9 gene editing in plant pathogenic oomycete species
    Dort, Erika N.
    Feau, Nicolas
    Hamelin, Richard C.
    MICROBIOLOGY SPECTRUM, 2025, 13 (04)
  • [35] Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein (RNP) complexes
    Wang, Q.
    Cobine, P.
    Coleman, J.
    PHYTOPATHOLOGY, 2018, 108 (10)
  • [36] A Novel Cas9 System with Robust Genome and Epigenome Editing in Human Cells
    Butterfield, Gabriel
    Rohm, Dahlia
    Roberts, Avery
    Nethery, Matthew
    Rizzo, Anthony
    Barrangou, Rodolphe
    Gersbach, Charles
    MOLECULAR THERAPY, 2022, 30 (04) : 271 - 272
  • [37] CRISPR/Cas9 genome editing in human hematopoietic stem cells
    Rasmus O Bak
    Daniel P Dever
    Matthew H Porteus
    Nature Protocols, 2018, 13 : 358 - 376
  • [38] CRISPR/Cas9 genome editing in human hematopoietic stem cells
    Bak, Rasmus O.
    Dever, Daniel P.
    Porteus, Matthew H.
    NATURE PROTOCOLS, 2018, 13 (02) : 358 - 376
  • [39] Editing the genome in cells and mice using CRISPR/Cas9 technology
    Herold, M. J.
    Aubrey, B. J.
    Kelly, G. L.
    Kueh, A. J.
    Brennan, M. S.
    O'Connor, L.
    Milla, L.
    Wilcox, S.
    Tai, L.
    Strasser, A.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 : 10 - 10
  • [40] Dual pH-responsive CRISPR/Cas9 ribonucleoprotein xenopeptide complexes for genome editing
    Luo, Xianjin
    Germer, Janin
    Burghardt, Tobias
    Grau, Melina
    Lin, Yi
    Hoehn, Miriam
    Laechelt, Ulrich
    Wagner, Ernst
    EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2025, 205