Integrable Time-Dependent Quantum Hamiltonians

被引:44
|
作者
Sinitsyn, Nikolai A. [1 ]
Yuzbashyan, Emil A. [2 ]
Chernyak, Vladimir Y. [3 ,4 ]
Patra, Aniket [1 ,2 ]
Sun, Chen [1 ,5 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA
[3] Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA
[4] Wayne State Univ, Dept Math, 5101 Cass Ave, Detroit, MI 48202 USA
[5] Texas A&M Univ, Dept Phys, College Stn, TX 77840 USA
基金
美国国家科学基金会;
关键词
RELAXATION; MODEL;
D O I
10.1103/PhysRevLett.120.190402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate a set of conditions under which the nonstationary Schrodinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abel ian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians
    Oleksandr V. Gamayun
    Oleg V. Lychkovskiy
    Proceedings of the Steklov Institute of Mathematics, 2021, 313 : 41 - 51
  • [32] CLASS OF SOLVABLE MODELS WITH TIME-DEPENDENT HAMILTONIANS
    ONOFRI, E
    LETTERE AL NUOVO CIMENTO, 1976, 16 (04): : 122 - 124
  • [33] Inverse problem of quadratic time-dependent Hamiltonians
    Guo Guang-Jie
    Meng Yan
    Chang Hong
    Duan Hui-Zeng
    Di Bing
    CHINESE PHYSICS B, 2015, 24 (08)
  • [34] A Map between Time-Dependent and Time-Independent Quantum Many-Body Hamiltonians
    Gamayun, Oleksandr, V
    Lychkovskiy, Oleg, V
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 313 (01) : 41 - 51
  • [35] Asymptotically quasiperiodic solutions for time-dependent Hamiltonians
    Scarcella, Donato
    NONLINEARITY, 2024, 37 (06)
  • [36] Optimal parent Hamiltonians for time-dependent states
    Rattacaso, Davide
    Passarelli, Gianluca
    Mezzacapo, Antonio
    Lucignano, Procolo
    Fazio, Rosario
    PHYSICAL REVIEW A, 2021, 104 (02)
  • [37] A GENERALIZED MASTER EQUATION FOR TIME-DEPENDENT HAMILTONIANS
    LUGIATO, LA
    PHYSICA, 1969, 44 (03): : 337 - &
  • [38] GENERAL DYNAMIC INVARIANTS FOR TIME-DEPENDENT HAMILTONIANS
    DUERING, E
    OTERO, D
    PLASTINO, A
    PROTO, AN
    PHYSICAL REVIEW A, 1987, 35 (05): : 2314 - 2320
  • [39] Inverse problem of quadratic time-dependent Hamiltonians
    郭光杰
    孟艳
    常虹
    段会增
    邸冰
    Chinese Physics B, 2015, (08) : 159 - 165
  • [40] Optimized dynamical decoupling for time-dependent Hamiltonians
    Pasini, Stefano
    Uhrig, Goetz S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (13)