Integrable Time-Dependent Quantum Hamiltonians

被引:44
|
作者
Sinitsyn, Nikolai A. [1 ]
Yuzbashyan, Emil A. [2 ]
Chernyak, Vladimir Y. [3 ,4 ]
Patra, Aniket [1 ,2 ]
Sun, Chen [1 ,5 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA
[3] Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA
[4] Wayne State Univ, Dept Math, 5101 Cass Ave, Detroit, MI 48202 USA
[5] Texas A&M Univ, Dept Phys, College Stn, TX 77840 USA
基金
美国国家科学基金会;
关键词
RELAXATION; MODEL;
D O I
10.1103/PhysRevLett.120.190402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate a set of conditions under which the nonstationary Schrodinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abel ian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
引用
收藏
页数:7
相关论文
共 50 条