Integrable Time-Dependent Quantum Hamiltonians

被引:44
|
作者
Sinitsyn, Nikolai A. [1 ]
Yuzbashyan, Emil A. [2 ]
Chernyak, Vladimir Y. [3 ,4 ]
Patra, Aniket [1 ,2 ]
Sun, Chen [1 ,5 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Rutgers State Univ, Ctr Mat Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA
[3] Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA
[4] Wayne State Univ, Dept Math, 5101 Cass Ave, Detroit, MI 48202 USA
[5] Texas A&M Univ, Dept Phys, College Stn, TX 77840 USA
基金
美国国家科学基金会;
关键词
RELAXATION; MODEL;
D O I
10.1103/PhysRevLett.120.190402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate a set of conditions under which the nonstationary Schrodinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abel ian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Evolution of quantum systems with a scaling type time-dependent Hamiltonians
    Samaj, L
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (26): : 3909 - 3914
  • [12] Quantum simulations of time-dependent Hamiltonians beyond the quasistatic approximation
    Shi, Boyuan
    Mintert, Florian
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [13] SYMMETRIES OF TIME-DEPENDENT HAMILTONIANS
    STEEB, WH
    LETTERE AL NUOVO CIMENTO, 1980, 28 (16): : 547 - 550
  • [14] Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets
    Yuzbashyan, Emil A.
    ANNALS OF PHYSICS, 2018, 392 : 323 - 339
  • [15] Speeding up quantum dynamics by adding tunable time-dependent Hamiltonians
    Ângelo F. da Silva França
    Jair da Silva Andrade
    Bertúlio de Lima Bernardo
    Quantum Information Processing, 21
  • [16] von Neumann equations with time-dependent Hamiltonians and supersymmetric quantum mechanics
    Czachor, M
    Doebner, HD
    Syty, M
    Wasylka, K
    PHYSICAL REVIEW E, 2000, 61 (04): : 3325 - 3329
  • [17] Speeding up quantum dynamics by adding tunable time-dependent Hamiltonians
    da Silva Franca, Angelo F.
    Andrade, Jair da Silva
    Bernardo, Bertulio de Lima
    QUANTUM INFORMATION PROCESSING, 2022, 21 (05)
  • [18] Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space
    Poulin, David
    Qarry, Angie
    Somma, Rolando
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2011, 106 (17)
  • [19] Von Neumann equations with time-dependent Hamiltonians and supersymmetric quantum mechanics
    Czachor, Marek
    Doebner, Heinz-Dietrich
    Syty, Monika
    Wasylka, Krzysztof
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 3325 - 3329
  • [20] Continuous quantum error correction for evolution under time-dependent Hamiltonians
    Atalaya, J.
    Zhang, S.
    Niu, M. Y.
    Babakhani, A.
    Chan, H. C. H.
    Epstein, J. M.
    Whaley, K. B.
    PHYSICAL REVIEW A, 2021, 103 (04)