Magneto-optical Goos-Hanchen effect in a prism-waveguide coupling structure

被引:44
|
作者
Tang, Tingting [1 ,2 ]
Qin, Jun [1 ]
Xie, Jianliang [1 ]
Deng, Longjiang [1 ]
Bi, Lei [1 ]
机构
[1] Univ Elect Sci & Technol China, Natl Engn Res Ctr Electromagnet Radiat Control Ma, Chengdu 610054, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Optoelect Technol, Chengdu 610225, Peoples R China
来源
OPTICS EXPRESS | 2014年 / 22卷 / 22期
基金
中国国家自然科学基金;
关键词
IRON-GARNET FILMS; PHOTONIC CRYSTALS; SHIFTS; BEAM;
D O I
10.1364/OE.22.027042
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report a theoretical study of the enhanced Goos-Hanchen (GH) effect in a prism-waveguide coupling system with a magneto-optic thin film of Ce doped Y3Fe5O12 (CeYIG). By magnetizing the CeYIG thin film along different directions, a variation of the GH shift can be observed, which is named as the MOGH (magneto-optical Goos-Hanchen) effect. The applied magnetic field direction is found to cause MOGH effect for light with different polarizations. As example systems, enhanced GH shift and MOGH effect is observed in both prism/Air/CeYIG/SiO2 and prism/Au/CeYIG/SiO2 structures, by applying opposite magnetic field across the CeYIG layer in a transverse magneto-optical Kerr effect (TMOKE) configuration. The GH and MOGH effect as a function of layer thicknesses, material refractive indices and magneto-optical properties are systematically simulated and discussed. It is observed that the coupling layer and MO layer thickness plays an important role of controlling the MOGH effect in the prism/Au/CeYIG/SiO2 plasmonic waveguide structure. The MOGH effect shows high sensitivity to applied magnetic field and index variations, making it promising for applications such as optical switches, modulators, and chemical or biomedical index sensors. (C) 2014 Optical Society of America.
引用
收藏
页码:27042 / 27055
页数:14
相关论文
共 50 条
  • [41] Magneto-optical phenomena in systems with prism coupling
    Pistora, J
    Foldyna, M
    Yamaguchi, T
    Vlcek, J
    Ciprian, D
    Postava, K
    Stanek, F
    PHOTONICS, DEVICES, AND SYSTEMS II, 2003, 5036 : 299 - 304
  • [42] Giant Tunable Goos-Hanchen Shifts Based on Prism/Graphene Structure in Terahertz Wave Region
    Li Jiu-Sheng
    Wu Jing-fang
    Zhang Le
    IEEE PHOTONICS JOURNAL, 2014, 6 (06):
  • [43] Goos-Hanchen shifts at a resonance angle of a two-prism structure using COMSOL Multiphysics
    Zhang, Wenjing
    Zhang, Zhiwei
    Yang, Peng
    Zhu, Xiang
    Dai, Yifan
    OPTICAL MEASUREMENT TECHNOLOGY AND INSTRUMENTATION, 2016, 10155
  • [44] Goos-Hanchen shift description in planar optical waveguides
    Rostami, A
    2003 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY, VOL 1 AND 2, PROCEEDINGS, 2003, : 663 - 667
  • [45] OPTICAL HETERODYNE SENSOR USING THE GOOS-HANCHEN SHIFT
    HASHIMOTO, T
    YOSHINO, T
    OPTICS LETTERS, 1989, 14 (17) : 913 - 915
  • [46] Electro-optic and magneto-optic modulations of Goos-Hanchen effect in double graphene coating waveguide with sensing applications
    Luo, Li
    Tang, Tingling
    Shen, Jian
    Li, Chaoyang
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 491
  • [47] Sticky Goos-Hanchen effect at normal/superconductor interface
    Lee, Soo-Young
    Goussev, Arseni
    Georgiou, Orestis
    Gligoric, Goran
    Lazarides, Achilleas
    EPL, 2013, 103 (02)
  • [48] Magneto-Optical Imbert-Fedorov Effect in Prism Coupling Configuration
    Tang, Tingting
    Bi, Lei
    Luo, Li
    Li, Jie
    Zhang, Yanfen
    Sun, Ping
    IEEE PHOTONICS JOURNAL, 2017, 9 (03):
  • [49] Oscillating wave displacement sensor using the enhanced Goos-Hanchen effect in a symmetrical metal-cladding optical waveguide
    Yu, Tianyi
    Li, Honggen
    Cao, Zhuangqi
    Wang, Yi
    Shen, Qishun
    He, Ying
    OPTICS LETTERS, 2008, 33 (09) : 1001 - 1003
  • [50] Goos-Hanchen effect enabled optical differential operation and image edge detection
    Xu, Dingyu
    He, Shanshan
    Zhou, Junxiao
    Chen, Shizhen
    Wen, Shuangchun
    Luo, Hailu
    APPLIED PHYSICS LETTERS, 2020, 116 (21)