Magneto-optical Goos-Hanchen effect in a prism-waveguide coupling structure

被引:44
|
作者
Tang, Tingting [1 ,2 ]
Qin, Jun [1 ]
Xie, Jianliang [1 ]
Deng, Longjiang [1 ]
Bi, Lei [1 ]
机构
[1] Univ Elect Sci & Technol China, Natl Engn Res Ctr Electromagnet Radiat Control Ma, Chengdu 610054, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Optoelect Technol, Chengdu 610225, Peoples R China
来源
OPTICS EXPRESS | 2014年 / 22卷 / 22期
基金
中国国家自然科学基金;
关键词
IRON-GARNET FILMS; PHOTONIC CRYSTALS; SHIFTS; BEAM;
D O I
10.1364/OE.22.027042
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report a theoretical study of the enhanced Goos-Hanchen (GH) effect in a prism-waveguide coupling system with a magneto-optic thin film of Ce doped Y3Fe5O12 (CeYIG). By magnetizing the CeYIG thin film along different directions, a variation of the GH shift can be observed, which is named as the MOGH (magneto-optical Goos-Hanchen) effect. The applied magnetic field direction is found to cause MOGH effect for light with different polarizations. As example systems, enhanced GH shift and MOGH effect is observed in both prism/Air/CeYIG/SiO2 and prism/Au/CeYIG/SiO2 structures, by applying opposite magnetic field across the CeYIG layer in a transverse magneto-optical Kerr effect (TMOKE) configuration. The GH and MOGH effect as a function of layer thicknesses, material refractive indices and magneto-optical properties are systematically simulated and discussed. It is observed that the coupling layer and MO layer thickness plays an important role of controlling the MOGH effect in the prism/Au/CeYIG/SiO2 plasmonic waveguide structure. The MOGH effect shows high sensitivity to applied magnetic field and index variations, making it promising for applications such as optical switches, modulators, and chemical or biomedical index sensors. (C) 2014 Optical Society of America.
引用
收藏
页码:27042 / 27055
页数:14
相关论文
共 50 条
  • [31] Thermo-optic Goos-Hanchen effect in silicon-on-insulator waveguide
    Tang, Tingting
    Luo, Li
    Liu, Wenli
    He, Xiujun
    Zhang, Yanfen
    APPLIED PHYSICS B-LASERS AND OPTICS, 2015, 120 (03): : 497 - 504
  • [32] Effect of surface roughness on the Goos-Hanchen shift
    Tahmasebi, Z.
    Amiri, M.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [33] EFFECT OF GOOS-HANCHEN SHIFTS ON PULSE WIDTHS IN OPTICAL-WAVEGUIDES
    WHITE, IA
    PASK, C
    APPLIED OPTICS, 1977, 16 (09): : 2353 - 2355
  • [34] Goos-Hanchen shift as a probe in evanescent slab waveguide sensors
    Taya, Sofyan A.
    El-Farram, Eman J.
    El-Agez, Taher M.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2012, 66 (03) : 204 - 210
  • [35] Electronic analogy of the Goos-Hanchen effect: a review
    Chen, Xi
    Lu, Xiao-Jing
    Ban, Yue
    Li, Chun-Fang
    JOURNAL OF OPTICS, 2013, 15 (03)
  • [36] Goos-Hanchen effect in the gaps of photonic crystals
    Felbacq, D
    Moreau, A
    Smaâli, R
    OPTICS LETTERS, 2003, 28 (18) : 1633 - 1635
  • [37] Goos-Hanchen effect of an extraordinary refracted beam
    Perez, LI
    Simon, MC
    JOURNAL OF MODERN OPTICS, 2006, 53 (07) : 1011 - 1021
  • [38] The Goos-Hanchen effect for surface plasmon polaritons
    Huerkamp, Felix
    Leskova, Tamara A.
    Maradudin, Alexei A.
    Baumeier, Bjoern
    OPTICS EXPRESS, 2011, 19 (16): : 15483 - 15489
  • [39] Goos-Hanchen effect of an ordinary refracted beam
    Simon, MC
    Perez, LI
    JOURNAL OF MODERN OPTICS, 2005, 52 (04) : 515 - 528
  • [40] GOOS-HANCHEN EFFECT IN THE DYNAMICS OF LASER EIGENSTATES
    DUTRIAUX, L
    LEFLOCH, A
    BRETENAKER, F
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1992, 9 (12) : 2283 - 2289