Magneto-optical Goos-Hanchen effect in a prism-waveguide coupling structure

被引:44
|
作者
Tang, Tingting [1 ,2 ]
Qin, Jun [1 ]
Xie, Jianliang [1 ]
Deng, Longjiang [1 ]
Bi, Lei [1 ]
机构
[1] Univ Elect Sci & Technol China, Natl Engn Res Ctr Electromagnet Radiat Control Ma, Chengdu 610054, Peoples R China
[2] Chengdu Univ Informat Technol, Coll Optoelect Technol, Chengdu 610225, Peoples R China
来源
OPTICS EXPRESS | 2014年 / 22卷 / 22期
基金
中国国家自然科学基金;
关键词
IRON-GARNET FILMS; PHOTONIC CRYSTALS; SHIFTS; BEAM;
D O I
10.1364/OE.22.027042
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report a theoretical study of the enhanced Goos-Hanchen (GH) effect in a prism-waveguide coupling system with a magneto-optic thin film of Ce doped Y3Fe5O12 (CeYIG). By magnetizing the CeYIG thin film along different directions, a variation of the GH shift can be observed, which is named as the MOGH (magneto-optical Goos-Hanchen) effect. The applied magnetic field direction is found to cause MOGH effect for light with different polarizations. As example systems, enhanced GH shift and MOGH effect is observed in both prism/Air/CeYIG/SiO2 and prism/Au/CeYIG/SiO2 structures, by applying opposite magnetic field across the CeYIG layer in a transverse magneto-optical Kerr effect (TMOKE) configuration. The GH and MOGH effect as a function of layer thicknesses, material refractive indices and magneto-optical properties are systematically simulated and discussed. It is observed that the coupling layer and MO layer thickness plays an important role of controlling the MOGH effect in the prism/Au/CeYIG/SiO2 plasmonic waveguide structure. The MOGH effect shows high sensitivity to applied magnetic field and index variations, making it promising for applications such as optical switches, modulators, and chemical or biomedical index sensors. (C) 2014 Optical Society of America.
引用
收藏
页码:27042 / 27055
页数:14
相关论文
共 50 条
  • [21] OPTICAL FIBERS AND GOOS-HANCHEN SHIFT
    GAMBLING, WA
    PAYNE, DN
    MATSUMUR.H
    MEDLICOT.M
    ELECTRONICS LETTERS, 1974, 10 (07) : 99 - 101
  • [22] Goos-Hanchen effect in semiconductor metamaterial waveguide and its application as a biosensor
    Tang, Tingting
    Li, Chaoyang
    Luo, Li
    Zhang, Yanfen
    Li, Jie
    APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (06):
  • [23] Enhanced normal-incidence Goos-Hanchen effects induced by magnetic surface plasmons in magneto-optical metamaterials
    Yu, W. J.
    Sun, H.
    Gao, L.
    OPTICS EXPRESS, 2018, 26 (04): : 3956 - 3973
  • [24] On the Goos-Hanchen effect in neutron optics
    Frank, A. I.
    INTERNATIONAL WORKSHOP ON NEUTRON OPTICS AND DETECTORS (NOP&D 2013), 2014, 528
  • [25] The Goos-Hanchen effect at Bragg diffraction
    Tamasaku, K
    Ishikawa, T
    ACTA CRYSTALLOGRAPHICA SECTION A, 2002, 58 : 408 - 409
  • [26] Magneto-optical and thermo-optical modulations of Goos-Hanchen effect in one-dimensional photonic crystal with graphene-VO2
    Yu, Bo
    Tang, Tingting
    Wang, Rui
    Qiao, Shaojie
    Li, Yuanxun
    Li, Chaoyang
    Shen, Jian
    Huang, Xiaolei
    Cao, Yang
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 530
  • [27] Planar Fractally-Shaped Terahertz Waveguide: on the Goos-Hanchen Effect
    Onufrienko, V. M.
    Slyusarova, T. I.
    Onufrienko, L. M.
    2018 14TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET), 2018, : 1237 - 1240
  • [28] Quantum Goos-Hanchen Effect in Graphene
    Beenakker, C. W. J.
    Sepkhanov, R. A.
    Akhmerov, A. R.
    Tworzydlo, J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (14)
  • [29] MEASUREMENT OF THE NONLINEAR GOOS-HANCHEN EFFECT FOR GAUSSIAN OPTICAL BEAMS
    EMILE, O
    GALSTYAN, T
    LEFLOCH, A
    BRETENAKER, F
    PHYSICAL REVIEW LETTERS, 1995, 75 (08) : 1511 - 1513
  • [30] Reverse relative Goos-Hanchen effect
    Dutriaux, L
    Balcou, P
    Bretenaker, F
    LeFloch, A
    EUROPHYSICS LETTERS, 1996, 33 (05): : 359 - 364