ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO DRIFT-DIFFUSION SYSTEM WITH GENERALIZED DISSIPATION

被引:33
|
作者
Ogawa, Takayoshi [1 ]
Yamamoto, Masakazu [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
来源
关键词
Drift-diffusion system; Keller-Segel equations; large data global solutions; decay of solution; fractional order derivatives; asymptotic profiles; NAVIER-STOKES EQUATIONS; LARGE-TIME BEHAVIOR; PARTIAL-DIFFERENTIAL-EQUATIONS; GLOBAL EXISTENCE; WHOLE SPACE; CHEMOTAXIS; MODEL;
D O I
10.1142/S021820250900367X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the global existence and asymptotic behavior of solutions for the Cauchy problem of a nonlinear parabolic and elliptic system arising from semiconductor model. Our system has generalized dissipation given by a fractional order of the Laplacian. It is shown that the time global existence and decay of the solutions to the equation with large initial data. We also show the asymptotic expansion of the solution up to the second terms as t ->infinity.
引用
收藏
页码:939 / 967
页数:29
相关论文
共 50 条
  • [41] HOLDER CONTINUITY OF SOLUTIONS FOR A CLASS OF DRIFT-DIFFUSION EQUATIONS
    Nguyen, Quoc-Hung
    Sire, Yannick
    Truong, Le Xuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (3-4) : 1657 - 1685
  • [42] Stationary solutions to the drift-diffusion model in the whole spaces
    Kobayashi, Ryo
    Kurokiba, Masaki
    Kawashima, Shuichi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (06) : 640 - 652
  • [43] New solutions for the quantum drift-diffusion model of semiconductors
    Ramirez, J.
    Tracina, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
  • [44] Weak solutions to the stationary quantum drift-diffusion model
    Qiang, Chen
    Ping, Guan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 666 - 673
  • [45] Asymptotic behavior of solutions of a periodic diffusion system
    Wu, Boying
    Qiao, Tiantian
    Sun, Jiebao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 453 - 460
  • [46] A flexible framework for simulating and fitting generalized drift-diffusion models
    Shinn, Maxwell
    Lam, Norman H.
    Murray, John D.
    ELIFE, 2020, 9
  • [47] Persistence of Besov Regularity for a Generalized Drift-Diffusion Equation with Pressure
    Weiren Zhao
    Acta Applicandae Mathematicae, 2018, 154 : 83 - 93
  • [48] Persistence of Besov Regularity for a Generalized Drift-Diffusion Equation with Pressure
    Zhao, Weiren
    ACTA APPLICANDAE MATHEMATICAE, 2018, 154 (01) : 83 - 93
  • [49] A Generalized Drift-Diffusion Model for Rectifying Schottky Contact Simulation
    Lorenzo Traversa, Fabio
    Bertazzi, Francesco
    Bonani, Fabrizio
    Guerrieri, Simona Donati
    Ghione, Giovanni
    Perez, Susana
    Mateos, Javier
    Gonzalez, Tomas
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (07) : 1539 - 1547
  • [50] Asymptotic analysis of the drift-diffusion equations and Hamilton-Jacobi equations
    Montarnal, P
    Perthame, B
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1997, 7 (01): : 61 - 80