ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO DRIFT-DIFFUSION SYSTEM WITH GENERALIZED DISSIPATION

被引:33
|
作者
Ogawa, Takayoshi [1 ]
Yamamoto, Masakazu [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
来源
关键词
Drift-diffusion system; Keller-Segel equations; large data global solutions; decay of solution; fractional order derivatives; asymptotic profiles; NAVIER-STOKES EQUATIONS; LARGE-TIME BEHAVIOR; PARTIAL-DIFFERENTIAL-EQUATIONS; GLOBAL EXISTENCE; WHOLE SPACE; CHEMOTAXIS; MODEL;
D O I
10.1142/S021820250900367X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the global existence and asymptotic behavior of solutions for the Cauchy problem of a nonlinear parabolic and elliptic system arising from semiconductor model. Our system has generalized dissipation given by a fractional order of the Laplacian. It is shown that the time global existence and decay of the solutions to the equation with large initial data. We also show the asymptotic expansion of the solution up to the second terms as t ->infinity.
引用
收藏
页码:939 / 967
页数:29
相关论文
共 50 条
  • [21] Asymptotic Behavior of the Scharfetter-Gummel Scheme for the Drift-Diffusion Model
    Chatard, Marianne
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 235 - 243
  • [22] Generalized Drift-Diffusion Model In Semiconductors
    Mesbah, S.
    Bendib-Kalache, K.
    Bendib, A.
    LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE, 2008, 1047 : 252 - 255
  • [23] The Asymptotic Drift-Diffusion Limit of Thermal Neutrons
    McClarren, Ryan G.
    Adams, Marvin L.
    Vaquer, Pablo A.
    Strack, Clay
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2014, 43 (1-7) : 402 - 417
  • [24] Study of generalized fractional drift-diffusion system in Besov-Morrey Study of generalized fractional drift-diffusion system in Besov-Morrey spaces spaces
    Srhiri, Halima
    Azanzal, Achraf
    Allalou, Chakir
    FILOMAT, 2024, 38 (17) : 6219 - 6235
  • [25] ASYMPTOTIC BEHAVIORS AND CLASSICAL LIMITS OF SOLUTIONS TO A QUANTUM DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    Nishibata, Shinya
    Shigetay, Naotaka
    Suzuki, Masahiro
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (06): : 909 - 936
  • [26] ON THE EXISTENCE OF SOLUTIONS FOR A DRIFT-DIFFUSION SYSTEM ARISING IN CORROSION MODELING
    Chainais-Hillairet, Claire
    Lacroix-Violet, Ingrid
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (01): : 77 - 92
  • [27] Asymmetry of nonlocal dissipation: From drift-diffusion to hydrodynamics
    Tikhonov, K. S.
    Gornyi, I., V
    Kachorovskii, V. Yu
    Mirlin, A. D.
    PHYSICAL REVIEW B, 2019, 100 (20)
  • [28] Generalized drift-diffusion model for miniband superlattices
    Bonilla, LL
    Escobedo, R
    Perales, A
    PHYSICAL REVIEW B, 2003, 68 (24)
  • [29] QUALITATIVE BEHAVIOR OF SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    JUNGEL, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (04): : 497 - 518
  • [30] Threshold of global behavior of solutions to a degenerate drift-diffusion system in between two critical exponents
    Kimijima, Atsushi
    Nakagawa, Kazushige
    Ogawa, Takayoshi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (1-2) : 441 - 472