ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO DRIFT-DIFFUSION SYSTEM WITH GENERALIZED DISSIPATION

被引:33
|
作者
Ogawa, Takayoshi [1 ]
Yamamoto, Masakazu [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
来源
关键词
Drift-diffusion system; Keller-Segel equations; large data global solutions; decay of solution; fractional order derivatives; asymptotic profiles; NAVIER-STOKES EQUATIONS; LARGE-TIME BEHAVIOR; PARTIAL-DIFFERENTIAL-EQUATIONS; GLOBAL EXISTENCE; WHOLE SPACE; CHEMOTAXIS; MODEL;
D O I
10.1142/S021820250900367X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the global existence and asymptotic behavior of solutions for the Cauchy problem of a nonlinear parabolic and elliptic system arising from semiconductor model. Our system has generalized dissipation given by a fractional order of the Laplacian. It is shown that the time global existence and decay of the solutions to the equation with large initial data. We also show the asymptotic expansion of the solution up to the second terms as t ->infinity.
引用
收藏
页码:939 / 967
页数:29
相关论文
共 50 条
  • [31] Threshold of global behavior of solutions to a degenerate drift-diffusion system in between two critical exponents
    Atsushi Kimijima
    Kazushige Nakagawa
    Takayoshi Ogawa
    Calculus of Variations and Partial Differential Equations, 2015, 53 : 441 - 472
  • [32] Asymptotic preserving schemes in the quasi-neutral limit for the drift-diffusion system
    Claire, Chainais-Hillairet
    Marie-Helene, Vignal
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 205 - +
  • [33] Uniform-in-time bounds for approximate solutions of the drift-diffusion system
    Bessemoulin-Chatard, M.
    Chainais-Hillairet, C.
    NUMERISCHE MATHEMATIK, 2019, 141 (04) : 881 - 916
  • [34] STUDY OF A FINITE VOLUME SCHEME FOR THE DRIFT-DIFFUSION SYSTEM. ASYMPTOTIC BEHAVIOR IN THE QUASI-NEUTRAL LIMIT
    Bessemoulin-Chatard, M.
    Chainais-Hillairet, C.
    Vignal, M. -H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 1666 - 1691
  • [35] Global solutions for a supercritical drift-diffusion equation
    Burczak, Jan
    Granero-Belinchon, Rafael
    ADVANCES IN MATHEMATICS, 2016, 295 : 334 - 367
  • [36] Uniform L∞ Estimates for Approximate Solutions of the Bipolar Drift-Diffusion System
    Bessemoulin-Chatard, M.
    Chainais-Hillairet, C.
    Juengel, A.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VIII-METHODS AND THEORETICAL ASPECTS, FVCA 8, 2017, 199 : 381 - 389
  • [37] On a Drift-Diffusion System for Semiconductor Devices
    Granero-Belinchon, Rafael
    ANNALES HENRI POINCARE, 2016, 17 (12): : 3473 - 3498
  • [38] SIMULATING DRIFT-DIFFUSION PROCESSES WITH GENERALIZED INTERVAL PROBABILITY
    Wang, Yan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 3, PTS A AND B, 2012, : 1201 - 1211
  • [39] An existence of stationary solutions for the Drift-Diffusion Semiconductor equations
    Guo, XL
    Xing, JS
    Ling, H
    DYNAMIC SYSTEMS AND APPLICATIONS, 2002, 11 (04): : 521 - 529
  • [40] Approximate solutions to the quantum drift-diffusion model of semiconductors
    Romano, V.
    Torrisi, M.
    Tracina, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (02)