Interactive single-cell data analysis using Cellar

被引:11
|
作者
Hasanaj, Euxhen [1 ]
Wang, Jingtao [2 ]
Sarathi, Arjun [3 ]
Ding, Jun [2 ]
Bar-Joseph, Ziv [1 ,3 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
[2] McGill Univ, Dept Med, Meakins Christie Labs, Hlth Ctr, Montreal, PQ H4A 3J1, Canada
[3] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
关键词
GENOME-WIDE EXPRESSION;
D O I
10.1038/s41467-022-29744-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell type assignment is a major challenge for all types of high throughput single cell data. In many cases such assignment requires the repeated manual use of external and complementary data sources. To improve the ability to uniformly assign cell types across large consortia, platforms and modalities, we developed Cellar, a software tool that provides interactive support to all the different steps involved in the assignment and dataset comparison process. We discuss the different methods implemented by Cellar, how these can be used with different data types, how to combine complementary data types and how to analyze and visualize spatial data. We demonstrate the advantages of Cellar by using it to annotate several HuBMAP datasets from multi-omics single-cell sequencing and spatial proteomics studies. Cellar is open-source and includes several annotated HuBMAP datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Deep learning shapes single-cell data analysis
    Qin Ma
    Dong Xu
    Nature Reviews Molecular Cell Biology, 2022, 23 : 303 - 304
  • [42] Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data
    Shulman, Eldad David
    Elkon, Ran
    NUCLEIC ACIDS RESEARCH, 2019, 47 (19) : 10027 - 10039
  • [43] ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data
    Gardeux, Vincent
    David, Fabrice P. A.
    Shajkofci, Adrian
    Schwalie, Petra C.
    Deplancke, Bart
    BIOINFORMATICS, 2017, 33 (19) : 3123 - 3125
  • [44] Single-Cell Analysis
    Santra, Tuhin Subhra
    Tseng, Fan-Gang
    CELLS, 2020, 9 (09)
  • [46] CAJAL enables analysis and integration of single-cell morphological data using metric geometry
    Govek, Kiya W.
    Nicodemus, Patrick
    Lin, Yuxuan
    Crawford, Jake
    Saturnino, Artur B.
    Cui, Hannah
    Zoga, Kristi
    Hart, Michael P.
    Camara, Pablo G.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [47] CAJAL enables analysis and integration of single-cell morphological data using metric geometry
    Kiya W. Govek
    Patrick Nicodemus
    Yuxuan Lin
    Jake Crawford
    Artur B. Saturnino
    Hannah Cui
    Kristi Zoga
    Michael P. Hart
    Pablo G. Camara
    Nature Communications, 14
  • [48] Performance analysis of markers for prostate cell typing in single-cell data
    Shen, Yanting
    Fei, Xiawei
    Xu, Junyan
    Yang, Rui
    Ge, Qinyu
    Wang, Zhong
    GENES & DISEASES, 2024, 11 (06)
  • [49] Analytics and visualization tools to characterize single-cell stochasticity using bacterial single-cell movie cytometry data
    Balomenos, Athanasios D.
    Stefanou, Victoria
    Manolakos, Elias S.
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [50] Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria
    Galbusera, Luca
    Bellement-Theroue, Gwendoline
    Urchueguia, Arantxa
    Julou, Thomas
    van Nimwegen, Erik
    PLOS ONE, 2020, 15 (10):