Interactive single-cell data analysis using Cellar

被引:11
|
作者
Hasanaj, Euxhen [1 ]
Wang, Jingtao [2 ]
Sarathi, Arjun [3 ]
Ding, Jun [2 ]
Bar-Joseph, Ziv [1 ,3 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Machine Learning Dept, Pittsburgh, PA 15213 USA
[2] McGill Univ, Dept Med, Meakins Christie Labs, Hlth Ctr, Montreal, PQ H4A 3J1, Canada
[3] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
关键词
GENOME-WIDE EXPRESSION;
D O I
10.1038/s41467-022-29744-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell type assignment is a major challenge for all types of high throughput single cell data. In many cases such assignment requires the repeated manual use of external and complementary data sources. To improve the ability to uniformly assign cell types across large consortia, platforms and modalities, we developed Cellar, a software tool that provides interactive support to all the different steps involved in the assignment and dataset comparison process. We discuss the different methods implemented by Cellar, how these can be used with different data types, how to combine complementary data types and how to analyze and visualize spatial data. We demonstrate the advantages of Cellar by using it to annotate several HuBMAP datasets from multi-omics single-cell sequencing and spatial proteomics studies. Cellar is open-source and includes several annotated HuBMAP datasets.
引用
收藏
页数:6
相关论文
共 50 条
  • [32] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    Biochemistry (Moscow), 2023, 88 : 231 - 252
  • [33] Single-cell multiomics: technologies and data analysis methods
    Jeongwoo Lee
    Do Young Hyeon
    Daehee Hwang
    Experimental & Molecular Medicine, 2020, 52 : 1428 - 1442
  • [34] An introduction to representation learning for single-cell data analysis
    Gunawan, Ihuan
    Vafaee, Fatemeh
    Meijering, Erik
    Lock, John George
    CELL REPORTS METHODS, 2023, 3 (08):
  • [35] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252
  • [36] The Current State of Single-Cell Proteomics Data Analysis
    Vanderaa, Christophe
    Gatto, Laurent
    CURRENT PROTOCOLS, 2023, 3 (01):
  • [37] BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
    Vallejos, Catalina A.
    Marioni, John C.
    Richardson, Sylvia
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)
  • [38] Protocol for analysis of single-cell sequencing data by Seqtometry
    Kousnetsov, Robert
    Hawiger, Daniel
    STAR PROTOCOLS, 2024, 5 (03):
  • [39] Single-cell multiomics: technologies and data analysis methods
    Lee, Jeongwoo
    Hyeon, Do Young
    Hwang, Daehee
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2020, 52 (09): : 1428 - 1442
  • [40] Computational methods for the integrative analysis of single-cell data
    Forcato, Mattia
    Romano, Oriana
    Bicciato, Silvio
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03) : 20 - 29