CAJAL enables analysis and integration of single-cell morphological data using metric geometry

被引:6
|
作者
Govek, Kiya W. [1 ]
Nicodemus, Patrick [1 ]
Lin, Yuxuan [2 ]
Crawford, Jake [3 ]
Saturnino, Artur B. [2 ]
Cui, Hannah [2 ]
Zoga, Kristi [1 ]
Hart, Michael P. [1 ]
Camara, Pablo G. [1 ,4 ,5 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Arts & Sci, Dept Math, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[4] Univ Penn, Inst Biomed Informat, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Ctr Artificial Intelligence & Data Sci Integrated, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
RNA-SEQ; RECOGNITION; NEURONS;
D O I
10.1038/s41467-023-39424-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell morphology is one of the most described phenotypes in biology, yet systematic quantification and classification of morphology remains limited. Here, the authors present a computational approach for cell morphometry and multi-modal analysis based on concepts from metric geometry. High-resolution imaging has revolutionized the study of single cells in their spatial context. However, summarizing the great diversity of complex cell shapes found in tissues and inferring associations with other single-cell data remains a challenge. Here, we present CAJAL, a general computational framework for the analysis and integration of single-cell morphological data. By building upon metric geometry, CAJAL infers cell morphology latent spaces where distances between points indicate the amount of physical deformation required to change the morphology of one cell into that of another. We show that cell morphology spaces facilitate the integration of single-cell morphological data across technologies and the inference of relations with other data, such as single-cell transcriptomic data. We demonstrate the utility of CAJAL with several morphological datasets of neurons and glia and identify genes associated with neuronal plasticity in C. elegans. Our approach provides an effective strategy for integrating cell morphology data into single-cell omics analyses.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] CAJAL enables analysis and integration of single-cell morphological data using metric geometry
    Kiya W. Govek
    Patrick Nicodemus
    Yuxuan Lin
    Jake Crawford
    Artur B. Saturnino
    Hannah Cui
    Kristi Zoga
    Michael P. Hart
    Pablo G. Camara
    Nature Communications, 14
  • [2] A downsampling method enables robust clustering and integration of single-cell transcriptome data
    Ren, Jun
    Zhang, Quan
    Zhou, Ying
    Hu, Yudi
    Lyu, Xuejing
    Fang, Hongkun
    Yang, Jing
    Yu, Rongshan
    Shi, Xiaodong
    Li, Qiyuan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 130
  • [3] MaxFuse enables data integration across weakly linked spatial and single-cell modalities
    Zhu, Bokai
    Ma, Zongming
    NATURE BIOTECHNOLOGY, 2024, 42 (07) : 1036 - 1037
  • [4] Comprehensive Integration of Single-Cell Data
    Stuart, Tim
    Butler, Andrew
    Hoffman, Paul
    Hafemeister, Christoph
    Papalexi, Efthymia
    Mauck, William M., III
    Hao, Yuhan
    Stoeckius, Marlon
    Smibert, Peter
    Satija, Rahul
    CELL, 2019, 177 (07) : 1888 - +
  • [5] MASI enables fast model-free standardization and integration of single-cell transcriptomics data
    Yang Xu
    Rafael Kramann
    Rachel Patton McCord
    Sikander Hayat
    Communications Biology, 6
  • [6] MASI enables fast model-free standardization and integration of single-cell transcriptomics data
    Xu, Yang
    Kramann, Rafael
    McCord, Rachel Patton
    Hayat, Sikander
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [7] InterCellar enables interactive analysis and exploration of cell−cell communication in single-cell transcriptomic data
    Marta Interlandi
    Kornelius Kerl
    Martin Dugas
    Communications Biology, 5
  • [8] Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data
    Islam, Md Tauhidul
    Xing, Lei
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [9] Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data
    Md Tauhidul Islam
    Lei Xing
    Nature Communications, 14
  • [10] Batch alignment of single-cell transcriptomics data using deep metric learning
    Yu, Xiaokang
    Xu, Xinyi
    Zhang, Jingxiao
    Li, Xiangjie
    NATURE COMMUNICATIONS, 2023, 14 (01)