CAJAL enables analysis and integration of single-cell morphological data using metric geometry

被引:6
|
作者
Govek, Kiya W. [1 ]
Nicodemus, Patrick [1 ]
Lin, Yuxuan [2 ]
Crawford, Jake [3 ]
Saturnino, Artur B. [2 ]
Cui, Hannah [2 ]
Zoga, Kristi [1 ]
Hart, Michael P. [1 ]
Camara, Pablo G. [1 ,4 ,5 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Arts & Sci, Dept Math, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[4] Univ Penn, Inst Biomed Informat, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Ctr Artificial Intelligence & Data Sci Integrated, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
RNA-SEQ; RECOGNITION; NEURONS;
D O I
10.1038/s41467-023-39424-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell morphology is one of the most described phenotypes in biology, yet systematic quantification and classification of morphology remains limited. Here, the authors present a computational approach for cell morphometry and multi-modal analysis based on concepts from metric geometry. High-resolution imaging has revolutionized the study of single cells in their spatial context. However, summarizing the great diversity of complex cell shapes found in tissues and inferring associations with other single-cell data remains a challenge. Here, we present CAJAL, a general computational framework for the analysis and integration of single-cell morphological data. By building upon metric geometry, CAJAL infers cell morphology latent spaces where distances between points indicate the amount of physical deformation required to change the morphology of one cell into that of another. We show that cell morphology spaces facilitate the integration of single-cell morphological data across technologies and the inference of relations with other data, such as single-cell transcriptomic data. We demonstrate the utility of CAJAL with several morphological datasets of neurons and glia and identify genes associated with neuronal plasticity in C. elegans. Our approach provides an effective strategy for integrating cell morphology data into single-cell omics analyses.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Cell composition analysis of bulk genomics using single-cell data
    Frishberg, Amit
    Peshes-Yaloz, Naama
    Cohn, Ofir
    Rosentul, Diana
    Steuerman, Yael
    Valadarsky, Liran
    Yankovitz, Gal
    Mandelboim, Michal
    Iraqi, Fuad A.
    Amit, Ido
    Mayo, Lior
    Bacharach, Eran
    Gat-Viks, Irit
    NATURE METHODS, 2019, 16 (04) : 327 - +
  • [32] Computational principles and challenges in single-cell data integration
    Ricard Argelaguet
    Anna S. E. Cuomo
    Oliver Stegle
    John C. Marioni
    Nature Biotechnology, 2021, 39 : 1202 - 1215
  • [33] Integration of multi-modal single-cell data
    Lee, Michelle Y. Y.
    Li, Mingyao
    NATURE BIOTECHNOLOGY, 2024, 42 (02) : 190 - 191
  • [34] Orthogonal multimodality integration and clustering in single-cell data
    Liu, Yufang
    Chen, Yongkai
    Lu, Haoran
    Zhong, Wenxuan
    Yuan, Guo-Cheng
    Ma, Ping
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [35] Integration of multi-modal single-cell data
    Michelle Y. Y. Lee
    Mingyao Li
    Nature Biotechnology, 2024, 42 : 190 - 191
  • [36] Unbiased detection and analysis of interstitial cell of Cajal classes by single-cell chromatin assay
    Gao, F.
    Kim, K. H.
    Gajdos, G. B.
    Saravanaperumal, S. A.
    Hayashi, Y.
    Lee, J. H.
    Bharucha, A. E.
    Ordog, T.
    NEUROGASTROENTEROLOGY AND MOTILITY, 2021, 33
  • [37] Data integration and inference of gene regulation using single-cell temporal multimodal data with scTIE
    Lin, Yingxin
    Wu, Tung-Yu
    Chen, Xi
    Wan, Sheng
    Chao, Brian
    Xin, Jingxue
    Yang, Jean Y. H.
    Wong, Wing H.
    Wang, Y. X. Rachel
    GENOME RESEARCH, 2024, 34 (01) : 119 - 133
  • [38] Single-cell systems analysis: decision geometry in outliers
    Abrahams, Lianne
    BIOINFORMATICS, 2021, 37 (12) : 1747 - 1755
  • [39] LSMMD-MA: scaling multimodal data integration for single-cell genomics data analysis
    Meng-Papaxanthos, Laetitia
    Zhang, Ran
    Li, Gang
    Cuturi, Marco
    Noble, William Stafford
    Vert, Jean-Philippe
    BIOINFORMATICS, 2023, 39 (07)
  • [40] Population-level integration of single-cell datasets enables multi-scale analysis across samples
    Carlo De Donno
    Soroor Hediyeh-Zadeh
    Amir Ali Moinfar
    Marco Wagenstetter
    Luke Zappia
    Mohammad Lotfollahi
    Fabian J. Theis
    Nature Methods, 2023, 20 : 1683 - 1692