CAJAL enables analysis and integration of single-cell morphological data using metric geometry

被引:6
|
作者
Govek, Kiya W. [1 ]
Nicodemus, Patrick [1 ]
Lin, Yuxuan [2 ]
Crawford, Jake [3 ]
Saturnino, Artur B. [2 ]
Cui, Hannah [2 ]
Zoga, Kristi [1 ]
Hart, Michael P. [1 ]
Camara, Pablo G. [1 ,4 ,5 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Arts & Sci, Dept Math, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[4] Univ Penn, Inst Biomed Informat, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Ctr Artificial Intelligence & Data Sci Integrated, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
RNA-SEQ; RECOGNITION; NEURONS;
D O I
10.1038/s41467-023-39424-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell morphology is one of the most described phenotypes in biology, yet systematic quantification and classification of morphology remains limited. Here, the authors present a computational approach for cell morphometry and multi-modal analysis based on concepts from metric geometry. High-resolution imaging has revolutionized the study of single cells in their spatial context. However, summarizing the great diversity of complex cell shapes found in tissues and inferring associations with other single-cell data remains a challenge. Here, we present CAJAL, a general computational framework for the analysis and integration of single-cell morphological data. By building upon metric geometry, CAJAL infers cell morphology latent spaces where distances between points indicate the amount of physical deformation required to change the morphology of one cell into that of another. We show that cell morphology spaces facilitate the integration of single-cell morphological data across technologies and the inference of relations with other data, such as single-cell transcriptomic data. We demonstrate the utility of CAJAL with several morphological datasets of neurons and glia and identify genes associated with neuronal plasticity in C. elegans. Our approach provides an effective strategy for integrating cell morphology data into single-cell omics analyses.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] InterCellar enables interactive analysis and exploration of cell-cell communication in single-cell transcriptomic data
    Interlandi, Marta
    Kerl, Kornelius
    Dugas, Martin
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [22] Interactive single-cell data analysis using Cellar
    Hasanaj, Euxhen
    Wang, Jingtao
    Sarathi, Arjun
    Ding, Jun
    Bar-Joseph, Ziv
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [23] JS']JSNMF enables effective and accurate integrative analysis of single-cell multiomics data
    Ma, Yuanyuan
    Sun, Zexuan
    Zeng, Pengcheng
    Zhang, Wenyu
    Lin, Zhixiang
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (03)
  • [24] Differential Variation Analysis Enables Detection of Tumor Heterogeneity Using Single-Cell RNA-Sequencing Data
    Davis-Marcisak, Emily F.
    Sherman, Thomas D.
    Orugunta, Pranay
    Stein-O'Brien, Genevieve L.
    Puram, Sidharth V.
    Torres, Evanthia T. Roussos
    Hopkins, Alexander C.
    Jaffee, Elizabeth M.
    Favorov, Alexander V.
    Afsari, Bahman
    Goff, Loyal A.
    Fertig, Elana J.
    CANCER RESEARCH, 2019, 79 (19) : 5102 - 5112
  • [25] EpiCHAOS: a metric to quantify epigenomic heterogeneity in single-cell data
    Kelly, Katherine
    Scherer, Michael
    Braun, Martina Maria
    Lutsik, Pavlo
    Plass, Christoph
    GENOME BIOLOGY, 2024, 25 (01):
  • [26] Cell composition analysis of bulk genomics using single-cell data
    Amit Frishberg
    Naama Peshes-Yaloz
    Ofir Cohn
    Diana Rosentul
    Yael Steuerman
    Liran Valadarsky
    Gal Yankovitz
    Michal Mandelboim
    Fuad A. Iraqi
    Ido Amit
    Lior Mayo
    Eran Bacharach
    Irit Gat-Viks
    Nature Methods, 2019, 16 : 327 - 332
  • [27] Scalable integration of multiomic single-cell data using generative adversarial networks
    Giansanti, Valentina
    Giannese, Francesca
    Botrugno, Oronza A.
    Gandolfi, Giorgia
    Balestrieri, Chiara
    Antoniotti, Marco
    Tonon, Giovanni
    Cittaro, Davide
    BIOINFORMATICS, 2024, 40 (05)
  • [28] Telomemore enables single-cell analysis of cell cycle and chromatin condensation
    Yakovenko, Iryna
    Mihai, Ionut Sebastian
    Selinger, Martin
    Rosenbaum, William
    Dernstedt, Andy
    Groning, Remigius
    Trygg, Johan
    Carroll, Laura
    Forsell, Mattias
    Henriksson, Johan
    NUCLEIC ACIDS RESEARCH, 2025, 53 (03)
  • [29] Scalable integration of multiomic single-cell data using generative adversarial networks
    Giansanti, Valentina
    Antoniotti, Marco
    Cittaro, Davide
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 598 - 598
  • [30] Computational principles and challenges in single-cell data integration
    Argelaguet, Ricard
    Cuomo, Anna S. E.
    Stegle, Oliver
    Marioni, John C.
    NATURE BIOTECHNOLOGY, 2021, 39 (10) : 1202 - 1215