Cell morphology is one of the most described phenotypes in biology, yet systematic quantification and classification of morphology remains limited. Here, the authors present a computational approach for cell morphometry and multi-modal analysis based on concepts from metric geometry. High-resolution imaging has revolutionized the study of single cells in their spatial context. However, summarizing the great diversity of complex cell shapes found in tissues and inferring associations with other single-cell data remains a challenge. Here, we present CAJAL, a general computational framework for the analysis and integration of single-cell morphological data. By building upon metric geometry, CAJAL infers cell morphology latent spaces where distances between points indicate the amount of physical deformation required to change the morphology of one cell into that of another. We show that cell morphology spaces facilitate the integration of single-cell morphological data across technologies and the inference of relations with other data, such as single-cell transcriptomic data. We demonstrate the utility of CAJAL with several morphological datasets of neurons and glia and identify genes associated with neuronal plasticity in C. elegans. Our approach provides an effective strategy for integrating cell morphology data into single-cell omics analyses.
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
Anyang Normal Univ, Sch Comp & Informat Engn, Anyang, Henan, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
Ma, Yuanyuan
Sun, Zexuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
Sun, Zexuan
Zeng, Pengcheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
Zeng, Pengcheng
Zhang, Wenyu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
Zhang, Wenyu
Lin, Zhixiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
机构:
Johns Hopkins Sch Med, Dept Med Genet, McKusick Nathans Inst, Baltimore, MD USA
Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD USA
Johns Hopkins Sch Med, Solomon H Snyder Dept Neurosci, Baltimore, MD USAJohns Hopkins Sch Med, Dept Med Genet, McKusick Nathans Inst, Baltimore, MD USA
Stein-O'Brien, Genevieve L.
Puram, Sidharth V.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, St Louis, MO USA
Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USAJohns Hopkins Sch Med, Dept Med Genet, McKusick Nathans Inst, Baltimore, MD USA
机构:
European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Hinxton, England
Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, EnglandEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Hinxton, England
Cuomo, Anna S. E.
Stegle, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
Mol Biol Lab, Genome Biol Unit, Heidelberg, GermanyEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Hinxton, England
Stegle, Oliver
Marioni, John C.
论文数: 0引用数: 0
h-index: 0
机构:
European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Hinxton, England
Wellcome Sanger Inst, Wellcome Genome Campus, Cambridge, England
Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, EnglandEuropean Bioinformat Inst EMBL EBI, European Mol Biol Lab, Hinxton, England