Synchronization schemes for two dimensional discrete systems

被引:4
|
作者
Ambika, G. [1 ]
Ambika, K.
机构
[1] Indian Inst Sci Educ & Res, Pune, Maharashtra, India
[2] Maharajas Coll, Dept Phys, Cochin 682011, Kerala, India
关键词
D O I
10.1088/0031-8949/74/5/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we consider two models of two dimensional (2D) discrete systems subjected to three different types of coupling and analyse systematically the performance of each in realizing synchronized states. We find that linear coupling (CS1) effectively introduces control of chaos along with synchronization, while synchronized chaotic states are possible with an additive parametric coupling (CS3) scheme both being equally relevant for specific applications. The basin leading to synchronization in the initial value plane and the choice of parameter values for synchronization in the parameter plane are isolated in each case.
引用
收藏
页码:510 / 518
页数:9
相关论文
共 50 条
  • [31] Synchronization of discrete time dynamical systems
    Kloeden, PE
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (13-15) : 1133 - 1138
  • [32] Impulsive synchronization of discrete chaotic systems
    Zheng, YA
    Nian, YB
    Liu, ZR
    CHINESE PHYSICS LETTERS, 2003, 20 (02) : 199 - 201
  • [33] Adaptive synchronization of discrete chaotic systems
    Wang, ZL
    Zhang, HG
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 336 - 339
  • [34] Phase synchronization in discrete chaotic systems
    Chen, JY
    Wong, KW
    Chen, ZX
    Xu, SC
    Shuai, JW
    PHYSICAL REVIEW E, 2000, 61 (03): : 2559 - 2562
  • [35] Discrete linear quadratic tracker for two-dimensional systems
    Li, Jim-Shone
    Tsai, Jason Sheng-Hong
    Shieh, Leang-San
    Journal of the Chinese Institute of Electrical Engineering, Transactions of the Chinese Institute of Engineers, Series E/Chung KuoTien Chi Kung Chieng Hsueh K'an, 2002, 9 (03): : 243 - 250
  • [36] Robust stability of two-dimensional uncertain discrete systems
    Wang, ZD
    Liu, XH
    IEEE SIGNAL PROCESSING LETTERS, 2003, 10 (05) : 133 - 136
  • [37] Singularity confinement and chaos in two-dimensional discrete systems
    Kanki, Masataka
    Mase, Takafumi
    Tokihiro, Tetsuji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (23)
  • [39] Partial synchronization in two-dimensional lattices of coupled nonlinear systems
    Belykh, IV
    Belykh, VN
    Nevidin, KV
    Hasler, M
    PROCEEDINGS OF THE 2001 WORKSHOP ON NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS, 2001, : 197 - 200
  • [40] MODEL REDUCTION OF TWO-DIMENSIONAL DISCRETE SYSTEMS.
    Jury, E.I.
    Premaratne, K.
    IEEE transactions on circuits and systems, 1986, CAS-33 (05): : 558 - 562