Synchronization schemes for two dimensional discrete systems

被引:4
|
作者
Ambika, G. [1 ]
Ambika, K.
机构
[1] Indian Inst Sci Educ & Res, Pune, Maharashtra, India
[2] Maharajas Coll, Dept Phys, Cochin 682011, Kerala, India
关键词
D O I
10.1088/0031-8949/74/5/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we consider two models of two dimensional (2D) discrete systems subjected to three different types of coupling and analyse systematically the performance of each in realizing synchronized states. We find that linear coupling (CS1) effectively introduces control of chaos along with synchronization, while synchronized chaotic states are possible with an additive parametric coupling (CS3) scheme both being equally relevant for specific applications. The basin leading to synchronization in the initial value plane and the choice of parameter values for synchronization in the parameter plane are isolated in each case.
引用
收藏
页码:510 / 518
页数:9
相关论文
共 50 条
  • [21] Generalized synchronization of discrete systems
    Ma, Zhong-jun
    Liu, Zeng-rong
    Zhang, Gang
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (05) : 609 - 614
  • [22] SYNCHRONIZATION BEHAVIOR IN DISCRETE SYSTEMS
    Zheng, Jian-Feng
    Gao, Zi-You
    Yang, Ling-Xiao
    Fu, Bai-Bai
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (05): : 441 - 448
  • [23] ANALYSIS OF DISCRETE SYNCHRONIZATION SYSTEMS
    ROMANOVS.MI
    TELECOMMUNICATIONS AND RADIO ENGINEER-USSR, 1966, (06): : 22 - &
  • [24] Synchronization Between Two Coupled Networks of Discrete-Time Systems
    Xu, Congxiang
    Sun, Weigang
    Li, Changpin
    ADVANCES IN COGNITIVE NEURODYNAMICS, PROCEEDINGS, 2008, : 843 - +
  • [25] Chaos synchronization for a class of discrete dynamical systems on the N-dimensional torus
    Rosier, L
    Millérioux, G
    Bloch, G
    SYSTEMS & CONTROL LETTERS, 2006, 55 (03) : 223 - 231
  • [26] Adaptive Synchronization of One-dimensional Discrete Chaotic Systems on Complex Networks
    Chen, Yanfei
    Jia, Zhen
    MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 1962 - 1966
  • [27] Instability of two-dimensional solitons in discrete systems
    Laedke, E.W.
    Spatschek, K.H.
    Mezentsev, V.K.
    Musher, S.L.
    Ryzhenkova, I.V.
    Turitsyn, S.K.
    JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1995, 62 (08):
  • [28] ON THE STABILITY OF TWO-DIMENSIONAL DISCRETE-SYSTEMS
    AHMED, ARE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (03) : 551 - 552
  • [29] Global synchronization in two-dimensional lattices of discrete Belousov-Zhabotinsky oscillators
    Fukuda, H
    Morimura, H
    Kai, S
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 205 (1-4) : 80 - 86
  • [30] Fractional chaos synchronization schemes for different dimensional systems with non-identical fractional-orders via two scaling matrices
    Ouannas, Adel
    Al-Sawalha, M. Mossa
    Ziar, Toufik
    OPTIK, 2016, 127 (20): : 8410 - 8418