Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power

被引:26
|
作者
Glasser, Matthew F. [1 ,2 ,3 ]
Coalson, Timothy S. [1 ]
Bijsterbosch, Janine D. [4 ]
Harrison, Samuel J. [4 ,5 ,6 ]
Harms, Michael P. [7 ]
Anticevic, Alan [8 ]
Van Essen, David C. [1 ]
Smith, Stephen M. [4 ]
机构
[1] Washington Univ, Med Sch, Dept Neurosci, St Louis, MO 63110 USA
[2] Washington Univ, Med Sch, Dept Radiol, St Louis, MO 63110 USA
[3] St Lukes Hosp, St Louis, MI 63017 USA
[4] Univ Oxford, Nuffield Dept Clin Neurosci, Wellcome Ctr Integrat Neuroimaging, Ctr Funct MRI Brain FMRIB,John Radcliffe Hosp, Headley Way, Oxford OX3 9DU, England
[5] Univ Zurich, Translat Neuromodeling Unit, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[6] Swiss Fed Inst Technol, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[7] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[8] Yale Univ, Sch Med, Dept Psychiat, 300 George St, New Haven, CT 06511 USA
基金
英国惠康基金;
关键词
FLUCTUATIONS; WAKEFULNESS; SIGNAL;
D O I
10.1016/j.neuroimage.2019.04.046
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We respond to a critique of our temporal Independent Components Analysis (ICA) method for separating global noise from global signal in fMRI data that focuses on the signal versus noise classification of several components. While we agree with several of Power's comments, we provide evidence and analysis to rebut his major criticisms and to reassure readers that temporal ICA remains a powerful and promising denoising approach.
引用
收藏
页码:435 / 438
页数:4
相关论文
共 50 条
  • [41] Brain-Inspired Spatio-Temporal Associative Memories for Neuroimaging Data Classification: EEG and fMRI
    Kasabov, Nikola K.
    Bahrami, Helena
    Doborjeh, Maryam
    Wang, Alan
    Zhang, Nanyin
    Boubchir, Larbi
    BIOENGINEERING-BASEL, 2023, 10 (12):
  • [42] Multitask fMRI Data Classification via Group-wise Hybrid Temporal and Spatial Sparse Representations
    Song, Limei
    Ren, Yudan
    Hou, Yuqing
    He, Xiaowei
    Liu, Huan
    ENEURO, 2022, 9 (03)
  • [43] STANet: A Novel Spatio-Temporal Aggregation Network for Depression Classification with Small and Unbalanced FMRI Data
    Zhang, Wei
    Zeng, Weiming
    Chen, Hongyu
    Liu, Jie
    Yan, Hongjie
    Zhang, Kaile
    Tao, Ran
    Siok, Wai Ting
    Wang, Nizhuan
    TOMOGRAPHY, 2024, 10 (12) : 1895 - 1914
  • [44] Spatiotemporal multiscale ICA could invariantly extract task (motor) modes from wavelet subbands of fMRI data
    Chen, Zeyuan
    Chen, Zikuan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 208 (208) : 106249
  • [45] A DATA-NOISE TOLERANT METHOD FOR MULTI-TEMPORAL HYPERSPECTRAL IMAGES CLASSIFICATION
    Hemissi, Selim
    Farah, Imed Riadh
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [46] The physical meaning of independent components and artifact removal of hyperspectral data from mars using ICA
    Hauksdottir, H.
    Jutten, C.
    Schmidt, F.
    Chanussot, J.
    Benediktsson, J. A.
    Doute, S.
    2006 7TH NORDIC SIGNAL PROCESSING SYMPOSIUM, 2006, : 226 - +
  • [47] Removal of ballistocardiogram artifact from EEG data acquired in the MRI scanner: selection of ICA components
    Koskinen, Miika
    Vartiainen, Nuutti
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 5220 - +
  • [48] Cognitive states classification from fMRI data using support vector machines
    Ji, Y
    Liu, HB
    Wang, XK
    Tang, YT
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2919 - 2923
  • [49] Classification and characterization of impulsive noise on indoor power line used for data communications
    Degardin, V
    Lienard, M
    Zeddam, A
    Gauthier, F
    Degauque, P
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2002, 48 (04) : 913 - 918
  • [50] Separating Noisy Samples From Tail Classes for Long-Tailed Image Classification With Label Noise
    Fang, Chaowei
    Cheng, Lechao
    Mao, Yining
    Zhang, Dingwen
    Fang, Yixiang
    Li, Guanbin
    Qi, Huiyan
    Jiao, Licheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16036 - 16048