Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power

被引:26
|
作者
Glasser, Matthew F. [1 ,2 ,3 ]
Coalson, Timothy S. [1 ]
Bijsterbosch, Janine D. [4 ]
Harrison, Samuel J. [4 ,5 ,6 ]
Harms, Michael P. [7 ]
Anticevic, Alan [8 ]
Van Essen, David C. [1 ]
Smith, Stephen M. [4 ]
机构
[1] Washington Univ, Med Sch, Dept Neurosci, St Louis, MO 63110 USA
[2] Washington Univ, Med Sch, Dept Radiol, St Louis, MO 63110 USA
[3] St Lukes Hosp, St Louis, MI 63017 USA
[4] Univ Oxford, Nuffield Dept Clin Neurosci, Wellcome Ctr Integrat Neuroimaging, Ctr Funct MRI Brain FMRIB,John Radcliffe Hosp, Headley Way, Oxford OX3 9DU, England
[5] Univ Zurich, Translat Neuromodeling Unit, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[6] Swiss Fed Inst Technol, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[7] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[8] Yale Univ, Sch Med, Dept Psychiat, 300 George St, New Haven, CT 06511 USA
基金
英国惠康基金;
关键词
FLUCTUATIONS; WAKEFULNESS; SIGNAL;
D O I
10.1016/j.neuroimage.2019.04.046
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We respond to a critique of our temporal Independent Components Analysis (ICA) method for separating global noise from global signal in fMRI data that focuses on the signal versus noise classification of several components. While we agree with several of Power's comments, we provide evidence and analysis to rebut his major criticisms and to reassure readers that temporal ICA remains a powerful and promising denoising approach.
引用
收藏
页码:435 / 438
页数:4
相关论文
共 50 条
  • [31] Classification of Schizophrenia Patients and Healthy Controls Using ICA of Complex-Valued fMRI Data and Convolutional Neural Networks
    Qiu, Yue
    Lin, Qiu-Hua
    Kuang, Li-Dan
    Zhao, Wen-Da
    Gong, Xiao-Feng
    Cong, Fengyu
    Calhoun, Vince D.
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II, 2019, 11555 : 540 - 547
  • [32] Analysis of Residual Dependencies of Independent Components Extracted from fMRI Data
    Vanello, N.
    Ricciardi, E.
    Landini, L.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [33] DATA-DRIVEN FMRI GROUP CLASSIFICATION USING CONNECTED COMPONENTS AND GAUSSIAN PROCESS CLASSIFIERS
    Lee, Sarah
    Zelaya, Fernando
    Samarasinghe, Yohan
    Amiel, Stephanie A.
    Brammer, Michael J.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 717 - 720
  • [34] A regularization algorithm for decoding perceptual temporal profiles from fMRI data
    Prato, Marco
    Favilla, Stefania
    Zanni, Luca
    Porro, Carlo A.
    Baraldi, Patrizia
    NEUROIMAGE, 2011, 56 (01) : 258 - 267
  • [35] Word Adjacency Graph Modeling: Separating Signal From Noise in Big Data
    Miller, Wendy R.
    Groves, Doyle
    Knopf, Amelia
    Otte, Julie L.
    Silverman, Ross D.
    WESTERN JOURNAL OF NURSING RESEARCH, 2017, 39 (01) : 166 - 185
  • [36] Extending ICA for finding jointly dependent components from two related data sets
    Karhunen, Juha
    Ukkonen, Tomas
    NEUROCOMPUTING, 2007, 70 (16-18) : 2969 - 2979
  • [37] Pattern Classification on fMRI Data Differentiates Bipolar from Unipolar Depression
    Dannlowski, Udo
    BIOLOGICAL PSYCHIATRY, 2012, 71 (08) : 233S - 233S
  • [38] Temporal ICA based Source Extraction from Dynamic Image Sequences with Visual Interference under Noise
    Abeyrathne, K. A. B. S.
    Wijesinghe, W. V. D.
    Godaliyadda, G. M. R. I.
    Ekanayake, M. P. B.
    Wijayakulasooriya, J. V.
    2013 8TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2013, : 671 - 675
  • [39] A novel signal processing technique for separating tonal and broadband noise components from counter-rotating open-rotor acoustic data
    Sree, Dave
    INTERNATIONAL JOURNAL OF AEROACOUSTICS, 2013, 12 (1-2) : 169 - 188
  • [40] ICA-Based Automatic Classification of Magnetic Resonance Images from ADNI Data
    Yang, Wenlu
    Chen, Xinyun
    Xie, Hong
    Huang, Xudong
    LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, 2010, 6330 : 340 - +