Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power

被引:26
|
作者
Glasser, Matthew F. [1 ,2 ,3 ]
Coalson, Timothy S. [1 ]
Bijsterbosch, Janine D. [4 ]
Harrison, Samuel J. [4 ,5 ,6 ]
Harms, Michael P. [7 ]
Anticevic, Alan [8 ]
Van Essen, David C. [1 ]
Smith, Stephen M. [4 ]
机构
[1] Washington Univ, Med Sch, Dept Neurosci, St Louis, MO 63110 USA
[2] Washington Univ, Med Sch, Dept Radiol, St Louis, MO 63110 USA
[3] St Lukes Hosp, St Louis, MI 63017 USA
[4] Univ Oxford, Nuffield Dept Clin Neurosci, Wellcome Ctr Integrat Neuroimaging, Ctr Funct MRI Brain FMRIB,John Radcliffe Hosp, Headley Way, Oxford OX3 9DU, England
[5] Univ Zurich, Translat Neuromodeling Unit, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[6] Swiss Fed Inst Technol, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[7] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[8] Yale Univ, Sch Med, Dept Psychiat, 300 George St, New Haven, CT 06511 USA
基金
英国惠康基金;
关键词
FLUCTUATIONS; WAKEFULNESS; SIGNAL;
D O I
10.1016/j.neuroimage.2019.04.046
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We respond to a critique of our temporal Independent Components Analysis (ICA) method for separating global noise from global signal in fMRI data that focuses on the signal versus noise classification of several components. While we agree with several of Power's comments, we provide evidence and analysis to rebut his major criticisms and to reassure readers that temporal ICA remains a powerful and promising denoising approach.
引用
收藏
页码:435 / 438
页数:4
相关论文
共 50 条
  • [21] ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data
    Pruim, Raimon H. R.
    Mennes, Maarten
    van Rooij, Daan
    Llera, Alberto
    Buitelaar, Jan K.
    Beckmann, Christian F.
    NEUROIMAGE, 2015, 112 : 267 - 277
  • [22] A Bayesian spatio - temporal approach for the analysis of fMRI data with non - stationary noise
    Oikonomou, Vangelis P.
    Tripoliti, Evanthia E.
    Fotiadis, Dimitrios I.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 4444 - +
  • [23] Temporal Classification Method for Forecasting Power Load Patterns From AMR Data
    Lee, Heon Gyu
    Shin, Jin-Ho
    Park, Hong Kyu
    Kim, Young-Il
    Lee, Bong-Jae
    Ryu, Keun Ho
    KOREAN JOURNAL OF REMOTE SENSING, 2007, 23 (05) : 393 - 400
  • [24] ICA separation of functional components from dynamic cardiac PET data
    Magadán-Méndez, M
    Kivimäki, A
    Ruotsalainen, U
    2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5, 2004, : 2618 - 2622
  • [25] Sample Augmentation for Classification of Schizophrenia Patients and Healthy Controls Using ICA of fMRI Data and Convolutional Neural Networks
    Niu, Yan-Wei
    Lin, Qiu-Hua
    Qiu, Yue
    Kuang, Li-Dan
    Calhoun, Vince D.
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 297 - 302
  • [26] Partner-matching for the automated identification of reproducible ICA components from fMRI datasets: Algorithm and validatione
    Wang, Zhishun
    Peterson, Bradley S.
    HUMAN BRAIN MAPPING, 2008, 29 (08) : 875 - 893
  • [27] Spatial and temporal reproducibility-based ranking of the independent components of BOLD fMRI data
    Zeng, Weiming
    Qiu, Anqi
    Chodkowski, BettyAnn
    Pekar, James J.
    NEUROIMAGE, 2009, 46 (04) : 1041 - 1054
  • [28] Temporal Variations in Global Seismic Station Ambient Noise Power Levels
    Ringler, A. T.
    Gee, L. S.
    Hutt, C. R.
    McNamara, D. E.
    SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (04) : 605 - 613
  • [29] Are global methods appropriate for fMR1 data analysis? An in vivo fMRI study of the spatio-temporal heterogeneity of fMRI data
    Baumgartner, R
    Somorjai, R
    Ryner, L
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 894 - 897
  • [30] Optimized Temporal Denoised Convolutional Autoencoder for Enhanced ADHD Classification Using fMRI Data
    Begum, Zarina
    Shaik, Kareemulla
    IEEE ACCESS, 2025, 13 : 29031 - 29045