Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power

被引:26
|
作者
Glasser, Matthew F. [1 ,2 ,3 ]
Coalson, Timothy S. [1 ]
Bijsterbosch, Janine D. [4 ]
Harrison, Samuel J. [4 ,5 ,6 ]
Harms, Michael P. [7 ]
Anticevic, Alan [8 ]
Van Essen, David C. [1 ]
Smith, Stephen M. [4 ]
机构
[1] Washington Univ, Med Sch, Dept Neurosci, St Louis, MO 63110 USA
[2] Washington Univ, Med Sch, Dept Radiol, St Louis, MO 63110 USA
[3] St Lukes Hosp, St Louis, MI 63017 USA
[4] Univ Oxford, Nuffield Dept Clin Neurosci, Wellcome Ctr Integrat Neuroimaging, Ctr Funct MRI Brain FMRIB,John Radcliffe Hosp, Headley Way, Oxford OX3 9DU, England
[5] Univ Zurich, Translat Neuromodeling Unit, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[6] Swiss Fed Inst Technol, Wilfriedstr 6, CH-8032 Zurich, Switzerland
[7] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[8] Yale Univ, Sch Med, Dept Psychiat, 300 George St, New Haven, CT 06511 USA
基金
英国惠康基金;
关键词
FLUCTUATIONS; WAKEFULNESS; SIGNAL;
D O I
10.1016/j.neuroimage.2019.04.046
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We respond to a critique of our temporal Independent Components Analysis (ICA) method for separating global noise from global signal in fMRI data that focuses on the signal versus noise classification of several components. While we agree with several of Power's comments, we provide evidence and analysis to rebut his major criticisms and to reassure readers that temporal ICA remains a powerful and promising denoising approach.
引用
收藏
页码:435 / 438
页数:4
相关论文
共 50 条
  • [1] Hand classification of fMRI ICA noise components
    Griffanti, Ludovica
    Douaud, Gwenaelle
    Bijsterbosch, Janine
    Evangelisti, Stefania
    Alfaro-Almagro, Fidel
    Glasser, Matthew F.
    Duff, Eugene P.
    Fitzgibbon, Sean
    Westphal, Robert
    Carone, Davide
    Beckmann, Christian F.
    Smith, Stephen M.
    NEUROIMAGE, 2017, 154 : 188 - 205
  • [2] CORSICA:: correction of structured noise in fMRI by automatic identification of ICA components
    Perlbarg, Vincent
    Bellec, Pierre
    Anton, Jean-Luc
    Pelegrini-Issac, Melanie
    Doyon, Julien
    Benali, Habib
    MAGNETIC RESONANCE IMAGING, 2007, 25 (01) : 35 - 46
  • [3] Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data
    Glasser, Matthew F.
    Coalson, Timothy S.
    Bijsterbosch, Janine D.
    Harrison, Samuel J.
    Harms, Michael P.
    Anticevic, Alan
    Van Essen, David C.
    Smith, Stephen M.
    NEUROIMAGE, 2018, 181 : 692 - 717
  • [4] Automated Classification of Resting-State fMRI ICA Components Using a Deep Siamese Network
    Chou, Yiyu
    Chang, Catie
    Remedios, Samuel W.
    Butman, John A.
    Chan, Leighton
    Pham, Dzung L.
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [5] Temporal Pattern Based Classification of Independent Components in Resting State fMRI
    Duric, Simona
    Loncar-Turukalo, Tatjana
    Dabic, David
    Koprivsek, Katarina
    Lucic, Milos
    Sveljo, Olivera
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 21 - 24
  • [6] SCTICA: Sub-packet constrained temporal ICA method for fMRI data analysis
    Shi, Yuhu
    Zeng, Weiming
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 102 : 75 - 85
  • [7] Are global methods appropriate for fMRI data analysis? An in vivo fMRI study of the spatio-temporal heterogeneity of fMRI data
    Baumgartner, R
    Somorjai, R
    Ryner, L
    NEUROIMAGE, 2001, 13 (06) : S74 - S74
  • [8] Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM
    Wang, Yanlu
    Li, Tie-Qiang
    FRONTIERS IN HUMAN NEUROSCIENCE, 2015, 9
  • [9] Latency (in)sensitive ICA Group independent component analysis of fMRI data in the temporal frequency domain
    Calhoun, VD
    Adali, T
    Pekar, JJ
    Pearlson, GD
    NEUROIMAGE, 2003, 20 (03) : 1661 - 1669
  • [10] Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest
    Boubela, Roland N.
    Kalcher, Klaudius
    Huf, Wolfgang
    Kronnerwetter, Claudia
    Filzmoser, Peter
    Moser, Ewald
    FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7