Predicting postoperative liver cancer death outcomes with machine learning

被引:15
|
作者
Wang, Yong [1 ]
Ji, Chaopeng [2 ,3 ]
Wang, Ying [1 ]
Ji, Muhuo [1 ]
Yang, Jian-Jun [1 ]
Zhou, Cheng-Mao [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Anesthesiol Pain & Perioperat Med, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Dept Rehabil Med, Zhengzhou, Peoples R China
[3] Zhengzhou Univ, Med Coll, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; hepatocellular carcinoma; mortality; postoperative; AUC;
D O I
10.1080/03007995.2021.1885361
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective To investigate the effect of 5 machine learning algorithms in predicting total hepatocellular carcinoma (HCC) postoperative death outcomes. Methods This study was a secondary analysis. A prognosis model was established using machine learning with python. Results The results from the machine learning gbm algorithm showed that the most important factors, ranked from first to fifth, were: preoperative aspartate aminotransferase (GOT), preoperative AFP, preoperative cereal third transaminase (GPT), preoperative total bilirubin, and LC3. Postoperative death model results for liver cancer patients in the test group: of the 5 algorithm models, the highest accuracy rate was that of forest (0.739), followed by the gbm algorithm (0.714); of the 5 algorithms, the AUC values, from high to low, were forest (0.803), GradientBoosting (0.746), gbm (0.724), Logistic (0.660) and DecisionTree (0.578). Conclusion Machine learning can predict total hepatocellular carcinoma postoperative death outcomes.
引用
收藏
页码:629 / 634
页数:6
相关论文
共 50 条
  • [31] A machine learning approach to predicting early and late postoperative reintubation
    Mathew J. Koretsky
    Ethan Y. Brovman
    Richard D. Urman
    Mitchell H. Tsai
    Nick Cheney
    Journal of Clinical Monitoring and Computing, 2023, 37 : 501 - 508
  • [32] Application of Machine Learning in Predicting Perioperative Outcomes in Patients with Cancer: A Narrative Review for Clinicians
    Brydges, Garry
    Uppal, Abhineet
    Gottumukkala, Vijaya
    CURRENT ONCOLOGY, 2024, 31 (05) : 2727 - 2747
  • [33] Machine Learning Algorithms for Predicting Fatty Liver Disease
    Pei, Xieyi
    Deng, Qingqing
    Liu, Zhuo
    Yan, Xiang
    Sun, Weiping
    ANNALS OF NUTRITION AND METABOLISM, 2021, 77 (01) : 38 - 45
  • [34] Predicting liver disorder based on machine learning models
    Zhao, Jing
    Wang, Peixia
    Pan, Yubiao
    JOURNAL OF ENGINEERING-JOE, 2022, 2022 (10): : 978 - 984
  • [35] Predicting outcomes of pelvic exenteration using machine learning
    Dudurych, I.
    Kelly, M. E.
    Aalbers, A. G. J.
    Aziz, N. Abdul
    Abecasis, N.
    Abraham-Nordling, M.
    Akiyoshi, T.
    Alberda, W.
    Albert, M.
    Andric, M.
    Angenete, E.
    Antoniou, A.
    Auer, R.
    Austin, K. K.
    Aziz, O.
    Baker, R. P.
    Bali, M.
    Baseckas, G.
    Bebington, B.
    Bedford, M.
    Bednarski, B. K.
    Beets, G. L.
    Berg, P. L.
    Beynon, J.
    Biondo, S.
    Boyle, K.
    Bordeianou, L.
    Bremers, A. B.
    Brunner, M.
    Buchwald, P.
    Bui, A.
    Burgess, A.
    Burger, J. W. A.
    Burling, D.
    Burns, E.
    Campain, N.
    Carvalhal, S.
    Castro, L.
    Caycedo-Marulanda, A.
    Chan, K. K. L.
    Chang, G. J.
    Chew, M. H.
    Chok, A. K.
    Chong, P.
    Christensen, H. K.
    Clouston, H.
    Codd, M.
    Collins, D.
    Colquhoun, A. J.
    Corr, A.
    COLORECTAL DISEASE, 2020, 22 (12) : 1933 - 1940
  • [36] Predicting Hearing Aid Outcomes Using Machine Learning
    Roger, Pauline
    Lespargot, Thomas
    Boiteux, Catherine
    Bailly-Masson, Eric
    Auberger, Fabien
    Mouysset, Sandrine
    Fraysse, Bernard
    AUDIOLOGY AND NEUROTOLOGY, 2025,
  • [37] Predicting Liver Disorders Using an Extreme Learning Machine
    Raja G.
    Reka K.
    Murugesan P.
    Meenakshi Sundaram S.
    SN Computer Science, 5 (6)
  • [38] Machine learning for predicting elective fertility preservation outcomes
    Braude, Itai
    Herzberger, Einat Haikin
    Semo, Mor
    Soifer, Kim
    Gepstein, Nitzan Goren
    Wiser, Amir
    Miller, Netanella
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [39] The promise of machine learning in predicting treatment outcomes in psychiatry
    Chekroud, Adam M.
    Bondar, Julia
    Delgadillo, Jaime
    Doherty, Gavin
    Wasil, Akash
    Fokkema, Marjolein
    Cohen, Zachary
    Belgrave, Danielle
    DeRubeis, Robert
    Iniesta, Raquel
    Dwyer, Dominic
    Choi, Karmel
    WORLD PSYCHIATRY, 2021, 20 (02) : 154 - 170
  • [40] Predicting Football Match Outcomes With Machine Learning Approaches
    Choi B.S.
    Foo L.K.
    Chua S.-L.
    Mendel, 2023, 29 (02) : 229 - 236