Predicting postoperative liver cancer death outcomes with machine learning

被引:15
|
作者
Wang, Yong [1 ]
Ji, Chaopeng [2 ,3 ]
Wang, Ying [1 ]
Ji, Muhuo [1 ]
Yang, Jian-Jun [1 ]
Zhou, Cheng-Mao [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Anesthesiol Pain & Perioperat Med, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Dept Rehabil Med, Zhengzhou, Peoples R China
[3] Zhengzhou Univ, Med Coll, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; hepatocellular carcinoma; mortality; postoperative; AUC;
D O I
10.1080/03007995.2021.1885361
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective To investigate the effect of 5 machine learning algorithms in predicting total hepatocellular carcinoma (HCC) postoperative death outcomes. Methods This study was a secondary analysis. A prognosis model was established using machine learning with python. Results The results from the machine learning gbm algorithm showed that the most important factors, ranked from first to fifth, were: preoperative aspartate aminotransferase (GOT), preoperative AFP, preoperative cereal third transaminase (GPT), preoperative total bilirubin, and LC3. Postoperative death model results for liver cancer patients in the test group: of the 5 algorithm models, the highest accuracy rate was that of forest (0.739), followed by the gbm algorithm (0.714); of the 5 algorithms, the AUC values, from high to low, were forest (0.803), GradientBoosting (0.746), gbm (0.724), Logistic (0.660) and DecisionTree (0.578). Conclusion Machine learning can predict total hepatocellular carcinoma postoperative death outcomes.
引用
收藏
页码:629 / 634
页数:6
相关论文
共 50 条
  • [21] Review of Machine Learning in Predicting Dermatological Outcomes
    Du, Amy X.
    Emam, Sepideh
    Gniadecki, Robert
    FRONTIERS IN MEDICINE, 2020, 7
  • [22] Value of machine learning in predicting TAVI outcomes
    Lopes, R. R.
    van Mourik, M. S.
    Schaft, E. V.
    Ramos, L. A.
    Baan, J., Jr.
    Vendrik, J.
    de Mol, B. A. J. M.
    Vis, M. M.
    Marquering, H. A.
    NETHERLANDS HEART JOURNAL, 2019, 27 (09) : 443 - 450
  • [23] Machine Learning in Predicting Poor Glycemic Outcomes
    Alquadan, Hammam
    Siminerio, Linda M.
    Krall, Jodi T.
    Ng, Jason
    DIABETES, 2020, 69
  • [24] Value of machine learning in predicting TAVI outcomes
    R. R. Lopes
    M. S. van Mourik
    E. V. Schaft
    L. A. Ramos
    J. Baan Jr.
    J. Vendrik
    B. A. J. M. de Mol
    M. M. Vis
    H. A. Marquering
    Netherlands Heart Journal, 2019, 27 : 443 - 450
  • [25] Machine Learning for Predicting Cancer Severity
    Qin, Alex
    Hasan, Md Rakibul
    Ahmed, Khandaker Asif
    Hossain, Md Zakir
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 527 - 529
  • [26] Machine learning algorithm for predicting longer postoperative length of stay among older cancer patients
    Shahrokni, Armin
    Rokni, Seyed Ali
    Ghasemzadeh, Hassan
    JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
  • [27] Machine learning in predicting postoperative complications in Crohn's disease
    Zhang, Li-Fan
    Chen, Liu-Xiang
    Yang, Wen-Juan
    Hu, Bing
    WORLD JOURNAL OF GASTROINTESTINAL SURGERY, 2024, 16 (08):
  • [28] Predicting Postoperative Opioid Prescription Refills: A Machine Learning Approach
    None, Jaewon Hur
    Gunaseelan, Vidhya
    Vu, Joceline
    Brummett, Chad
    Waljee, Jennifer F.
    Wiens, Jenna
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2019, 229 (04) : S109 - S110
  • [29] Predicting postoperative outcomes of liver resection by magnetic resonance elastography
    Abe, Hayato
    Midorikawa, Yutaka
    Mitsuka, Yusuke
    Aramaki, Osamu
    Higaki, Tokio
    Matsumoto, Naoki
    Moriyama, Mitsuhiko
    Haradome, Hiroki
    Abe, Osamu
    Sugitani, Masahiko
    Tsuji, Shingo
    Takayama, Tadatoshi
    SURGERY, 2017, 162 (02) : 248 - 255
  • [30] A machine learning approach to predicting early and late postoperative reintubation
    Koretsky, Mathew J.
    Brovman, Ethan Y.
    Urman, Richard D.
    Tsai, Mitchell H.
    Cheney, Nick
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2023, 37 (02) : 501 - 508