High-density plasma with internal diffusion barrier in the Large Helical Device

被引:26
|
作者
Sakamoto, R. [1 ]
Kobayashi, M. [1 ]
Miyazawa, J. [1 ]
Ohdachi, S. [1 ]
Yamada, H. [1 ]
Funaba, H. [1 ]
Goto, M. [1 ]
Masuzaki, S. [1 ]
Morisaki, T. [1 ]
Yamada, I. [1 ]
Narihara, K. [1 ]
Tanaka, K. [1 ]
Morita, S. [1 ]
Ida, K. [1 ]
Sakakibara, S. [1 ]
Narushima, Y. [1 ]
Watanabe, K. Y. [1 ]
Suzuki, Y. [1 ]
Ashikawa, N. [1 ]
Nagayama, Y. [1 ]
Peterson, B. J. [1 ]
Shoji, M. [1 ]
Suzuki, C. [1 ]
Tokitani, M. [1 ]
Yoshimura, S. [1 ]
Ohyabu, N. [1 ]
Komori, A. [1 ]
Motojima, O. [1 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
关键词
ENERGY CONFINEMENT; PERFORMANCE; TOKAMAK; REGIMES; LHD;
D O I
10.1088/0029-5515/49/8/085002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An attractive high-density operational regime which is a so-called internal diffusion barrier (IDB) has been discovered in a helical divertor configuration on the Large Helical Device (LHD). The IDB is characterized by steep density gradients and the plasma profile is divided by the IDB into a high-density core plasma and a low density mantle plasma. The IDB enables the core plasma to access the high-density/high-pressure regime. The attainable central density exceeds 1 x 10(21) m(-3) and the central pressure reaches approximate to 1.5 times atmospheric pressure. Core pellet fuelling is absolutely essential for the IDB formation and it is reproducibly obtained by employing intensive multiple-pellet injection. In the IDB core plasma, the particle diffusion coefficient is kept at a considerably low level, 0.05 m(2) s(-1), in spite of high-density and steep-density gradients whereas an inward particle convection velocity is not observed.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Plasma emission tomographic reconstruction in the large helical device
    Liu, Y
    Kostrioukov, AY
    Peterson, BJ
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (04): : 2312 - 2317
  • [42] Conditionings for plasma facing walls of large helical device
    Hino, T
    Ohuchi, T
    Hashiba, M
    Yamauchi, Y
    Hirohata, Y
    Inoue, N
    Sagara, A
    Noda, N
    Motojima, O
    JOURNAL OF NUCLEAR MATERIALS, 2001, 290 : 1176 - 1179
  • [43] Internal disruptions and sawtooth like activity in Large Helical Device
    Varela, J.
    Garcia, L.
    Ohdachi, S.
    Watanabe, K. Y.
    Sanchez, R.
    PHYSICS OF PLASMAS, 2012, 19 (08)
  • [44] High-density localized spins in helical carbon nanotubes
    Wen, Jianfeng
    Zhuang, Ye
    Li, Ming
    Tang, Nujing
    Wan, Xiangang
    Zhong, Wei
    Du, Youwei
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 340 : 76 - 79
  • [45] PRODUCTION OF HIGH-DENSITY SHEET PLASMA BY AN RF MAGNETRON DEVICE WITH HIGH-FREQUENCY OPERATION
    MURATA, K
    OKUNO, Y
    FUJITA, H
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (03): : 673 - 677
  • [46] RADIAL BUILD BETWEEN HELICAL-COIL AND PLASMA IN THE LARGE HELICAL DEVICE
    OHYABU, N
    YAMAZAKI, K
    HANTAO, JI
    IMAGAWA, S
    KANEKO, H
    MORIMOTO, S
    NODA, N
    SATOW, T
    YAMAMOTO, J
    MOTOJIMA, O
    FUSION ENGINEERING AND DESIGN, 1993, 20 : 73 - 77
  • [47] Electrical properties of the Ta-RuO2 diffusion barrier for high-density memory devices
    Yoon, DS
    Baik, HK
    Lee, SM
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (04) : 949 - 951
  • [48] METHOD FOR OBTAINING HIGH-DENSITY PLASMA
    GERASIMOV, SI
    ZOTOV, EV
    KOROTCHENKO, MV
    KRASOVSKII, GB
    KHOLIN, SA
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1993, 29 (06) : 774 - 775
  • [49] CYCLOTRON INSTABILITY IN HIGH-DENSITY PLASMA
    TIMOFEEV, AV
    SOVIET ATOMIC ENERGY-USSR, 1971, 30 (03): : 328 - &
  • [50] RABBIT PLASMA HIGH-DENSITY LIPOPROTEIN
    SAVAGE, JK
    YEATES, RA
    MACKINNON, AM
    CALVERT, GD
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 1980, 7 (01) : 94 - 94