High-density plasma with internal diffusion barrier in the Large Helical Device

被引:26
|
作者
Sakamoto, R. [1 ]
Kobayashi, M. [1 ]
Miyazawa, J. [1 ]
Ohdachi, S. [1 ]
Yamada, H. [1 ]
Funaba, H. [1 ]
Goto, M. [1 ]
Masuzaki, S. [1 ]
Morisaki, T. [1 ]
Yamada, I. [1 ]
Narihara, K. [1 ]
Tanaka, K. [1 ]
Morita, S. [1 ]
Ida, K. [1 ]
Sakakibara, S. [1 ]
Narushima, Y. [1 ]
Watanabe, K. Y. [1 ]
Suzuki, Y. [1 ]
Ashikawa, N. [1 ]
Nagayama, Y. [1 ]
Peterson, B. J. [1 ]
Shoji, M. [1 ]
Suzuki, C. [1 ]
Tokitani, M. [1 ]
Yoshimura, S. [1 ]
Ohyabu, N. [1 ]
Komori, A. [1 ]
Motojima, O. [1 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
关键词
ENERGY CONFINEMENT; PERFORMANCE; TOKAMAK; REGIMES; LHD;
D O I
10.1088/0029-5515/49/8/085002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An attractive high-density operational regime which is a so-called internal diffusion barrier (IDB) has been discovered in a helical divertor configuration on the Large Helical Device (LHD). The IDB is characterized by steep density gradients and the plasma profile is divided by the IDB into a high-density core plasma and a low density mantle plasma. The IDB enables the core plasma to access the high-density/high-pressure regime. The attainable central density exceeds 1 x 10(21) m(-3) and the central pressure reaches approximate to 1.5 times atmospheric pressure. Core pellet fuelling is absolutely essential for the IDB formation and it is reproducibly obtained by employing intensive multiple-pellet injection. In the IDB core plasma, the particle diffusion coefficient is kept at a considerably low level, 0.05 m(2) s(-1), in spite of high-density and steep-density gradients whereas an inward particle convection velocity is not observed.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Electron cyclotron emission diagnostics for helical plasma in the large helical device
    Nagayama, Y
    Kawahata, K
    Inagaki, S
    Morisaki, T
    Narihara, K
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2004, 32 (04) : 1716 - 1720
  • [32] The control of the high-density microwave plasma for large-area electronics
    Shirai, H
    Sakuma, Y
    Ueyama, H
    THIN SOLID FILMS, 1999, 337 (1-2) : 12 - 17
  • [33] Density Collapse Events Observed in the Large Helical Device
    Ohdachi, S.
    Sakamoto, R.
    Miyazawa, J.
    Morisaki, T.
    Masuzaki, S.
    Yamada, H.
    Watanabe, K. Y.
    Jacobo, V. R.
    Nakajima, N.
    Watanabe, F.
    Takeuchi, M.
    Toi, K.
    Sakakibara, S.
    Suzuki, Y.
    Narushima, Y.
    Yamada, I.
    Mianami, T.
    Narihara, K.
    Tanaka, K.
    Tokuzawa, T.
    Kawahata, K.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (6-7) : 552 - 557
  • [34] Diffusion barrier performance of novel RuTiN material for high-density volatile memory capacitor
    Yoon, DS
    Roh, JS
    Lee, SM
    Baik, HK
    ACTA MATERIALIA, 2003, 51 (09) : 2531 - 2538
  • [35] Future direction for a diffusion barrier in future high-density volatile and nonvolatile memory devices
    Yoon, DS
    Roh, JS
    Baik, HK
    Lee, SM
    CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2002, 27 (3-4) : 143 - 226
  • [36] Potential of High-density Convergent Plasma Sputtering Device for Magnetic Film Deposition
    Motomura, Taisei
    Tabaru, Tatsuo
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2019, 17 : 27 - 31
  • [37] Helicon antenna radiation patterns in a high-density hydrogen linear plasma device
    Caneses, J. F.
    Blackwell, B. D.
    Piotrowicz, P.
    PHYSICS OF PLASMAS, 2017, 24 (11)
  • [38] Production of high-density plasmas in electron-beam-excited plasma device
    Ito, Akihiro, 1600, JJAP, Minato-ku, Japan (33):
  • [39] OPERATING PROPERTIES OF A HELICAL MICROWAVE PLASMA SOURCE IN HIGH-DENSITY HIGH MAGNETIC-FIELD REGIME
    CANO, R
    ZANFAGNA, B
    LISITANO, G
    PLASMA PHYSICS AND CONTROLLED FUSION, 1973, 15 (05) : 457 - 460
  • [40] Plasma wall interaction study in the large helical device
    Hino, I.
    Nobuta, Y.
    Ashikawa, N.
    Nishimura, K.
    Masuzaki, S.
    Sagara, A.
    Hirohata, Y.
    Yamauchi, Y.
    Noda, N.
    Ohyabu, N.
    Komori, A.
    Motojima, O.
    FUSION ENGINEERING AND DESIGN, 2007, 82 (15-24) : 1621 - 1626