Cramer rule for quaternionic linear equations in quaternionic quantum theory

被引:7
|
作者
Jiang, Tongsong [1 ]
机构
[1] Linyi Normal Univ, Dept Math, Shandong 276005, Peoples R China
[2] Shandong Univ, Dept Comp Sci & Technol, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Cramer rule; complex representation; companion vector; quaternionic linear equation;
D O I
10.1016/S0034-4877(06)80033-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of a complex representation of a quaternion matrix and a companion vector, this paper introduces a new definition of determinant for a quaternion matrix, derives a technique of finding an inverse matrix of a quaternion invertible matrix, and gives a Cramer rule for quaternionic linear equations in quaternionic quantum theory.
引用
收藏
页码:463 / 468
页数:6
相关论文
共 50 条
  • [41] Pluripotential theory on quaternionic manifolds
    Alesker, Semyon
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (05) : 1189 - 1206
  • [42] Linear Manifolds in Sets of Solutions of Quaternionic Polynomial Equations of Several Types
    Mierzejewski, Dmytro
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (02) : 417 - 428
  • [43] Linear Manifolds in Sets of Solutions of Quaternionic Polynomial Equations of Several Types
    Dmytro Mierzejewski
    Advances in Applied Clifford Algebras, 2011, 21 : 417 - 428
  • [44] Two-sided linear split quaternionic equations with n unknowns
    Erdogdu, Melek
    Ozdemir, Mustafa
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (01): : 97 - 106
  • [45] Systems of quaternionic linear matrix equations: solution, computation, algorithm, and applications
    Rehman, Abdur
    Rahman, Muhammad Zia Ur
    Ghaffar, Asim
    Martin-Barreiro, Carlos
    Castro, Cecilia
    Leiva, Victor
    Cabezas, Xavier
    AIMS MATHEMATICS, 2024, 9 (10): : 26371 - 26402
  • [46] Numerical solutions of Quaternionic Riccati equations
    Shao, Xiongyu
    Wei, Yimin
    Chu, Eric King-wah
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2617 - 2639
  • [47] Quaternionic Beltrami Equations with VMO Coefficients
    Aleksis Koski
    The Journal of Geometric Analysis, 2015, 25 : 910 - 923
  • [48] Differential Equations of Null Quaternionic Curves
    Kahraman T.
    International Journal of Applied and Computational Mathematics, 2020, 6 (3)
  • [49] QUATERNIONIC FORM OF MAXWELLS EQUATIONS WITH SOURCES
    MAJERNIK, V
    NAGY, M
    LETTERE AL NUOVO CIMENTO, 1976, 16 (09): : 265 - 268
  • [50] Numerical solutions of Quaternionic Riccati equations
    Xiongyu Shao
    Yimin Wei
    Eric King-wah Chu
    Journal of Applied Mathematics and Computing, 2023, 69 : 2617 - 2639