Cramer rule for quaternionic linear equations in quaternionic quantum theory

被引:7
|
作者
Jiang, Tongsong [1 ]
机构
[1] Linyi Normal Univ, Dept Math, Shandong 276005, Peoples R China
[2] Shandong Univ, Dept Comp Sci & Technol, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Cramer rule; complex representation; companion vector; quaternionic linear equation;
D O I
10.1016/S0034-4877(06)80033-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of a complex representation of a quaternion matrix and a companion vector, this paper introduces a new definition of determinant for a quaternion matrix, derives a technique of finding an inverse matrix of a quaternion invertible matrix, and gives a Cramer rule for quaternionic linear equations in quaternionic quantum theory.
引用
收藏
页码:463 / 468
页数:6
相关论文
共 50 条
  • [11] QUATERNIONIC FORMULATION OF SEGALS QUANTUM FIELD THEORY
    VETROVEC, M
    SALAZAR, JJ
    KALNAY, AJ
    ACTA CIENTIFICA VENEZOLANA, 1970, 21 : 45 - &
  • [12] Cramer’s rules for various solutions to some restricted quaternionic linear systems
    Song G.-J.
    Chang H.
    Wu Z.
    J. Appl. Math. Comp., 1-2 (83-109): : 83 - 109
  • [13] LOCAL LINEAR INDEPENDENCE CONDITIONS AND QUATERNIONIC EQUATIONS OF GRAVITATION
    AMARAL, CMD
    RODRIGUE.MC
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1973, 45 (01): : 81 - 86
  • [14] An algebraic method for Schrodinger equations in quaternionic quantum mechanics
    Jiang, Tongsong
    Chen, Li
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (11) : 795 - 799
  • [15] Quaternionic quantum automata
    Dai, Songsong
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2023, 21 (04)
  • [16] Quaternionic Quantum Particles
    Giardino, Sergio
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (04)
  • [17] Quaternionic Quantum Particles
    Sergio Giardino
    Advances in Applied Clifford Algebras, 2019, 29
  • [18] SUPER-QUANTUM NONLOCAL CORRELATIONS IN QUATERNIONIC QUANTUM THEORY
    Mckague, Matthew
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 (06) : 1355 - 1362
  • [19] Quaternionic quantum walks
    Konno N.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (1) : 63 - 76
  • [20] Quaternionic perturbation theory
    Stefano De Leo
    Caio Almeida Alves de Souza
    Gisele Ducati
    The European Physical Journal Plus, 134