QUATERNIONIC FORM OF MAXWELLS EQUATIONS WITH SOURCES

被引:27
|
作者
MAJERNIK, V
NAGY, M
机构
[1] KATEDRA FYZ PEDAGOG FAK, CS-94974 NITRA, CZECHOSLOVAKIA
[2] SLOVAK ACAD SCI, INST PHYS, CS-88930 BRATISLAVA, CZECHOSLOVAKIA
来源
LETTERE AL NUOVO CIMENTO | 1976年 / 16卷 / 09期
关键词
D O I
10.1007/BF02747070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:265 / 268
页数:4
相关论文
共 50 条
  • [1] A HAMILTONIAN FORM OF MAXWELLS EQUATIONS
    SANKARANARAYANAN, A
    PROGRESS OF THEORETICAL PHYSICS, 1970, 43 (05): : 1204 - +
  • [2] MAXWELLS EQUATIONS - SHOWN AND DECLARED BY SOURCES AND USERS
    HERZOG, W
    INTERNATIONALE ELEKTRONISCHE RUNDSCHAU, 1975, 29 (07): : 145 - 148
  • [3] EFFICIENT SOLUTION OF THE DIFFERENTIAL FORM OF MAXWELLS EQUATIONS IN RECTANGULAR REGIONS
    GARCIACASTILLO, LE
    SALAZARPALMA, M
    SARKAR, TK
    ADVE, RS
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1995, 43 (03) : 647 - 654
  • [4] MAXWELLS EQUATIONS
    FRANKEL, T
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (04): : 343 - 349
  • [5] EXPRESSION OF ELECTROMAGNETIC-POTENTIAL EQUATIONS IN QUATERNIONIC FORM
    SINGH, A
    LETTERE AL NUOVO CIMENTO, 1981, 32 (06): : 171 - 174
  • [6] ON THE STRENGTH OF MAXWELLS EQUATIONS
    MATTHEWS, NFJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (04) : 810 - 814
  • [7] UNIQUENESS OF MAXWELLS EQUATIONS
    COHN, J
    AMERICAN JOURNAL OF PHYSICS, 1978, 46 (12) : 1210 - 1212
  • [8] MAXWELLS EQUATIONS REVISITED
    HAYES, RC
    WIRELESS WORLD, 1980, 86 (1537): : 49 - 50
  • [9] MAXWELLS GRID EQUATIONS
    BARTS, T
    BROWMAN, J
    COOPER, RK
    DEHLER, M
    DOHLUS, M
    EBELING, F
    FISCHERAUER, A
    FISCHERAUER, G
    HAHNE, P
    KLATT, R
    KRAWCZYK, F
    MARX, M
    PROPPER, T
    RODENZ, G
    RUSTHOI, D
    SCHUTT, P
    STEFFEN, B
    WEILAND, T
    WIPF, SG
    FREQUENZ, 1990, 44 (01) : 9 - 16
  • [10] MAXWELLS EQUATIONS IN DYNAMICS
    CHENG, CC
    AMERICAN JOURNAL OF PHYSICS, 1966, 34 (07) : 622 - &