Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal

被引:17
|
作者
Mo, Yongguang [1 ]
Huang, Jianjun [1 ]
Qian, Gongbin [2 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Precessing, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
关键词
unmanned aerial vehicles; detection and identification; radio frequency; compressed sensing; deep learning; DRONE DETECTION;
D O I
10.3390/s22083072
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, the frequent occurrence of the misuse and intrusion of UAVs has made it a research challenge to identify and detect them effectively, and relatively high bandwidth and pressure on data transmission and real-time processing exist when sampling UAV communication signals using the RF detection method. In this paper, firstly, for data sampling, we chose a compressed sensing technique to replace the traditional sampling theorem and used a multi-channel random demodulator to sample the signal; secondly, for the detection and identification of the presence, type, and flight pattern of UAVs, a multi-stage deep learning-based UAV identification and detection method was proposed by exploiting the difference in communication signals between UAVs and controllers under different circumstances. The data samples are first passed by detectors that detect the presence of UAVs, then classifiers are used to identify the type of UAVs, and finally flight patterns are judged by the corresponding classifiers, for which two neural network structures (DNN and CNN) are constructed by deep learning algorithms and evaluated and validated by a 10-fold cross-validation method, with the DNN network used for detectors and the CNN network for subsequent type and flying mode classification. The experimental results demonstrate, first, the effectiveness of using compressed sensing for sampling the communication signals of UAVs and controllers; and second, the detecting method with multi-stage DL detects higher efficiency and accuracy compared with existing detecting methods, detecting the presence, type, and flight model of UAVs with an accuracy of over 99%.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Classification of remote sensed images using random forests and deep learning framework
    Piramanayagam, S.
    Schwartzkopf, W.
    Koehler, F. W.
    Saber, E.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004
  • [42] Supervised Classification of Multisensor Remotely Sensed Images Using a Deep Learning Framework
    Piramanayagam, Sankaranarayanan
    Saber, Eli
    Schwartzkopf, Wade
    Koehler, Frederick W.
    REMOTE SENSING, 2018, 10 (09)
  • [43] CASTING DEFECTS DETECTION IN ALUMINUM ALLOYS USING DEEP LEARNING: A CLASSIFICATION APPROACH
    Nikolic, Filip
    Stajduhar, Ivan
    Canadija, Marko
    INTERNATIONAL JOURNAL OF METALCASTING, 2023, 17 (01) : 386 - 398
  • [44] Novel Approach Using Deep Learning for Intrusion Detection and Classification of the Network Traffic
    Ahmad, Shahbaz
    Arif, Fahim
    Zabeehullah
    Iltaf, Naima
    2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2020), 2020,
  • [45] Detection and classification of cervical cancer images using CEENET deep learning approach
    Subarna, T. G.
    Sukumar, P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3695 - 3707
  • [46] Casting Defects Detection in Aluminum Alloys Using Deep Learning: a Classification Approach
    Filip Nikolić
    Ivan Štajduhar
    Marko Čanađija
    International Journal of Metalcasting, 2023, 17 : 386 - 398
  • [47] Footballer Detection on Position Based Classification Recognition using Deep Learning Approach
    Rashid, Fadilla Atyka Nor
    Liew, Siaw-Hong
    2022 INTERNATIONAL CONFERENCE ON GREEN ENERGY, COMPUTING AND SUSTAINABLE TECHNOLOGY (GECOST), 2022, : 193 - 197
  • [48] Enhanced Fish Species Detection and Classification Using a Novel Deep Learning Approach
    Iqtait, Musab
    Alqaryouti, Marwan Harb
    Sadeq, Ala Eddin
    Aburomman, Ahmad
    Baniata, Mahmoud
    Mustafa, Zaid
    Chan, Huah Yong
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (10) : 1062 - 1067
  • [49] Drone Detection and Classification using Deep Learning
    Behera, Dinesh Kumar
    Raj, Arockia Bazil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1012 - 1016
  • [50] A Deep Learning Based Forest Fire Detection Approach Using UAV and YOLOv3
    Jiao, Zhentian
    Zhang, Youmin
    Xin, Jing
    Mu, Lingxia
    Yi, Yingmin
    Liu, Han
    Liu, Ding
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,