Casting Defects Detection in Aluminum Alloys Using Deep Learning: a Classification Approach

被引:0
|
作者
Filip Nikolić
Ivan Štajduhar
Marko Čanađija
机构
[1] Elaphe Propulsion Technologies Ltd,CAE Department
[2] Cimos d.d. Automotive Industry,Research and Development Department
[3] University of Rijeka,Department of Computer Engineering, Faculty of Engineering
[4] University of Rijeka,Department of Engineering Mechanics, Faculty of Engineering
来源
关键词
casting defects; convolutional neural network; casting microstructure inspection; deep learning; aluminum alloys;
D O I
暂无
中图分类号
学科分类号
摘要
The present research deals with the detection of porosity defects in aluminum alloys using convolutional neural networks (CNNs). The goal of this research is to build a CNN model that can accurately predict porosity defects in light optical microscopy images. To train the model, images of polished samples of several aluminum alloys containing a significant number of defects were used: EN AC 46000 AlSi9Cu3(Fe), EN AC 43400 AlSi10Mg(Fe), EN AC 47100 AlSi12Cu1(Fe), EN AC 51400 AlMg5(Si), EN AC 42000 AlSi7Mg0.6, EN AC 42000 AlSi7Mg and EN AC-44300 AlSi12(Fe)(a). Various types of porosity defects were included. The proposed custom CNN structure performed excellently in the test set: it correctly classified 3,990 images and made errors in only 254 images. Thus, the classification accuracy achieved was 94%. In addition, the performance of the model was tested with all the alloys used during the training at the nominal magnification (50×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}) as well as with the EN AC 46000 AlSi9Cu3(Fe) alloys at different magnifications (50×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 200×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 400×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 500×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}). Consequently, it is shown that deep learning models can be used to accurately predict porosity defects.
引用
收藏
页码:386 / 398
页数:12
相关论文
共 50 条
  • [1] CASTING DEFECTS DETECTION IN ALUMINUM ALLOYS USING DEEP LEARNING: A CLASSIFICATION APPROACH
    Nikolic, Filip
    Stajduhar, Ivan
    Canadija, Marko
    INTERNATIONAL JOURNAL OF METALCASTING, 2023, 17 (01) : 386 - 398
  • [2] Deep learning-based detection of aluminum casting defects and their types
    Parlak, Ismail Enes
    Emel, Erdal
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [3] Detection and Classification of Defects in Plastic Components Using a Deep Learning Approach
    Mameli, Marco
    Paolanti, Marina
    Mancini, Adriano
    Frontoni, Emanuele
    Zingaretti, Primo
    INTELLIGENT AUTONOMOUS SYSTEMS 16, IAS-16, 2022, 412 : 713 - 722
  • [4] Detection and classification of painting defects using deep learning
    Adachi, Kazune
    Natori, Takahiro
    Aikawa, Naoyuki
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [5] Detection and Classification of Fabric Defects Using Deep Learning Algorithms
    Geze, Recep Ali
    Akbas, Ayhan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2024, 27 (01):
  • [6] Aluminum Casting Inspection using Deep Object Detection Methods and Simulated Ellipsoidal Defects
    Mery, Domingo
    MACHINE VISION AND APPLICATIONS, 2021, 32 (03)
  • [7] Aluminum Casting Inspection using Deep Object Detection Methods and Simulated Ellipsoidal Defects
    Domingo Mery
    Machine Vision and Applications, 2021, 32
  • [8] Detection of Defects on SiC Substrate by SEM and Classification Using Deep Learning
    Monno, Shota
    Kamada, Yoshifumi
    Miwa, Hiroyoshi
    Ashida, Koji
    Kaneko, Tadaaki
    ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS, 2019, 23 : 47 - 58
  • [9] Automatic detection of casting defects based on deep learning model fusion
    Yang K.
    Fang C.
    Duan L.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (11): : 150 - 159
  • [10] Detection and classification of adult epilepsy using hybrid deep learning approach
    Saravanan Srinivasan
    Sundaranarayana Dayalane
    Sandeep kumar Mathivanan
    Hariharan Rajadurai
    Prabhu Jayagopal
    Gemmachis Teshite Dalu
    Scientific Reports, 13