Casting Defects Detection in Aluminum Alloys Using Deep Learning: a Classification Approach

被引:0
|
作者
Filip Nikolić
Ivan Štajduhar
Marko Čanađija
机构
[1] Elaphe Propulsion Technologies Ltd,CAE Department
[2] Cimos d.d. Automotive Industry,Research and Development Department
[3] University of Rijeka,Department of Computer Engineering, Faculty of Engineering
[4] University of Rijeka,Department of Engineering Mechanics, Faculty of Engineering
来源
关键词
casting defects; convolutional neural network; casting microstructure inspection; deep learning; aluminum alloys;
D O I
暂无
中图分类号
学科分类号
摘要
The present research deals with the detection of porosity defects in aluminum alloys using convolutional neural networks (CNNs). The goal of this research is to build a CNN model that can accurately predict porosity defects in light optical microscopy images. To train the model, images of polished samples of several aluminum alloys containing a significant number of defects were used: EN AC 46000 AlSi9Cu3(Fe), EN AC 43400 AlSi10Mg(Fe), EN AC 47100 AlSi12Cu1(Fe), EN AC 51400 AlMg5(Si), EN AC 42000 AlSi7Mg0.6, EN AC 42000 AlSi7Mg and EN AC-44300 AlSi12(Fe)(a). Various types of porosity defects were included. The proposed custom CNN structure performed excellently in the test set: it correctly classified 3,990 images and made errors in only 254 images. Thus, the classification accuracy achieved was 94%. In addition, the performance of the model was tested with all the alloys used during the training at the nominal magnification (50×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}) as well as with the EN AC 46000 AlSi9Cu3(Fe) alloys at different magnifications (50×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 200×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 400×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 500×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}). Consequently, it is shown that deep learning models can be used to accurately predict porosity defects.
引用
收藏
页码:386 / 398
页数:12
相关论文
共 50 条
  • [31] Fingerprint classification using deep learning approach
    Rim, Beanbonyka
    Kim, Junseob
    Hong, Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 35809 - 35825
  • [32] Fluidity of Solidifying Aluminum Casting Alloys as an Essential Factor in the Occurrence of Casting Defects.
    Henrichs, L.
    Hielscher, U.
    Metall, 1975, 29 (03): : 281 - 284
  • [33] Detection of Fiber Defects Using Keypoints and Deep Learning
    Siegmund, Dirk
    Fu, Biying
    Jose-Garcia, Adan
    Salahuddin, Ahmad
    Kuijper, Arjan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (05)
  • [34] Performance of deep learning approaches for detection and classification of ceramic tile defects
    Sivabalaselvamani, D.
    Nanthini, K.
    Vanithamani, S.
    Nivetha, L.
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2023, 24 (01): : 78 - 88
  • [35] Automatic Detection and Classification of Sewer Defects via Hierarchical Deep Learning
    Xie, Qian
    Li, Dawei
    Xu, Jinxuan
    Yu, Zhenghao
    Wang, Jun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2019, 16 (04) : 1836 - 1847
  • [36] Deep learning for the detection and classification of adhesion defects in antique plaster layers
    Lo Giudice, Michele
    Mariani, Francesca
    Caliano, Giosue
    Salvini, Alessandro
    JOURNAL OF CULTURAL HERITAGE, 2024, 69 : 78 - 85
  • [37] Detection of external defects in tomatoes using deep learning
    Chaturvedi A.
    Sharma S.
    Janghel R.R.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (03) : 2709 - 2721
  • [38] A deep learning approach for ovarian cancer detection and classification based on fuzzy deep learning
    El-Latif, Eman I. Abd
    El-dosuky, Mohamed
    Darwish, Ashraf
    Hassanien, Aboul Ella
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [39] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [40] Quality Control of Casting Aluminum Parts: A Comparison of Deep Learning Models for Filings Detection
    Nascimento, Rui
    Ferreira, Tony
    Rocha, Claudia
    Filipe, Vitor
    Silva, Manuel F.
    Veiga, Germano
    Rocha, Luis
    2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC, 2023, : 105 - 111