Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal

被引:17
|
作者
Mo, Yongguang [1 ]
Huang, Jianjun [1 ]
Qian, Gongbin [2 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Coll Elect & Informat Engn, Guangdong Key Lab Intelligent Informat Precessing, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
关键词
unmanned aerial vehicles; detection and identification; radio frequency; compressed sensing; deep learning; DRONE DETECTION;
D O I
10.3390/s22083072
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Recently, the frequent occurrence of the misuse and intrusion of UAVs has made it a research challenge to identify and detect them effectively, and relatively high bandwidth and pressure on data transmission and real-time processing exist when sampling UAV communication signals using the RF detection method. In this paper, firstly, for data sampling, we chose a compressed sensing technique to replace the traditional sampling theorem and used a multi-channel random demodulator to sample the signal; secondly, for the detection and identification of the presence, type, and flight pattern of UAVs, a multi-stage deep learning-based UAV identification and detection method was proposed by exploiting the difference in communication signals between UAVs and controllers under different circumstances. The data samples are first passed by detectors that detect the presence of UAVs, then classifiers are used to identify the type of UAVs, and finally flight patterns are judged by the corresponding classifiers, for which two neural network structures (DNN and CNN) are constructed by deep learning algorithms and evaluated and validated by a 10-fold cross-validation method, with the DNN network used for detectors and the CNN network for subsequent type and flying mode classification. The experimental results demonstrate, first, the effectiveness of using compressed sensing for sampling the communication signals of UAVs and controllers; and second, the detecting method with multi-stage DL detects higher efficiency and accuracy compared with existing detecting methods, detecting the presence, type, and flight model of UAVs with an accuracy of over 99%.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Disruptive GNSS Signal detection and classification at different Power levels Using Advanced Deep-Learning Approach
    Elango, Arul
    Ujan, Sahar
    Ruotsalainen, Laura
    2022 INTERNATIONAL CONFERENCE ON LOCALIZATION AND GNSS (ICL-GNSS), 2022,
  • [22] Disruptive GNSS Signal detection and classification at different Power levels Using Advanced Deep-Learning Approach
    Elango, Arul
    Ujan, Sahar
    Ruotsalainen, Laura
    2022 International Conference on Localization and GNSS, ICL-GNSS 2022 - Proceedings, 2022,
  • [23] Deep Learning Approach for Wireless Signal and Modulation Classification
    Bhargava, B. C.
    Deshmukh, Ankush
    Rupa, M. Venkata
    Sirigina, Rajendra Prasad
    Vankayala, Satya Kumar
    Narasimhadhan, A., V
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [24] Detection and classification of adult epilepsy using hybrid deep learning approach
    Saravanan Srinivasan
    Sundaranarayana Dayalane
    Sandeep kumar Mathivanan
    Hariharan Rajadurai
    Prabhu Jayagopal
    Gemmachis Teshite Dalu
    Scientific Reports, 13
  • [25] Classification and Detection of Various Structural Cracks Using Deep Learning Approach
    Vundekode, Narasimha Reddy
    Kalapatapu, Prafulla
    Pasupuleti, Venkata Dilip Kumar
    EUROPEAN WORKSHOP ON STRUCTURAL HEALTH MONITORING (EWSHM 2022), VOL 2, 2023, : 1028 - 1037
  • [26] Automatic detection and classification of knee osteoarthritis using deep learning approach
    S. Sheik Abdullah
    M. Pallikonda Rajasekaran
    La radiologia medica, 2022, 127 : 398 - 406
  • [27] Detection and classification of adult epilepsy using hybrid deep learning approach
    Srinivasan, Saravanan
    Dayalane, Sundaranarayana
    Mathivanan, Sandeep kumar
    Rajadurai, Hariharan
    Jayagopal, Prabhu
    Dalu, Gemmachis Teshite
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] Detection and Classification of Defects in Plastic Components Using a Deep Learning Approach
    Mameli, Marco
    Paolanti, Marina
    Mancini, Adriano
    Frontoni, Emanuele
    Zingaretti, Primo
    INTELLIGENT AUTONOMOUS SYSTEMS 16, IAS-16, 2022, 412 : 713 - 722
  • [29] Automatic detection and classification of knee osteoarthritis using deep learning approach
    Abdullah, S. Sheik
    Rajasekaran, M. Pallikonda
    RADIOLOGIA MEDICA, 2022, 127 (04): : 398 - 406
  • [30] Damage detection with an autonomous UAV using deep learning
    Kang, Dongho
    Cha, Young-Jin
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2018, 2018, 10598