Semi-Idempotents in Neutrosophic Rings

被引:2
|
作者
Kandasamy, Vasantha W. B. [1 ]
Kandasamy, Ilanthenral [1 ]
Smarandache, Florentin [2 ]
机构
[1] VIT, Sch Comp Sci & Engn, Vellore 632014, Tamil Nadu, India
[2] Univ New Mexico, Dept Math, 705 Gurley Ave, Gallup, NM 87301 USA
关键词
semi-idempotent; neutrosophic rings; modulo neutrosophic rings; neutrosophic semi-idempotent;
D O I
10.3390/math7060507
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In complex rings or complex fields, the notion of imaginary element i with i2=-1 or the complex number i is included, while, in the neutrosophic rings, the indeterminate element I where I2=I is included. The neutrosophic ring < RI > is also a ring generated by R and I under the operations of R. In this paper we obtain a characterization theorem for a semi-idempotent to be in < ZpI >, the neutrosophic ring of modulo integers, where p a prime. Here, we discuss only about neutrosophic semi-idempotents in these neutrosophic rings. Several interesting properties about them are also derived and some open problems are suggested.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] IDEMPOTENTS IN POLYNOMIAL-RINGS
    KAMAL, AAM
    ACTA MATHEMATICA HUNGARICA, 1992, 59 (3-4) : 355 - 363
  • [42] Semicommutativity of Rings by the Way of Idempotents
    Kose, Handan
    Ungor, Burcu
    Harmanci, Abdullah
    FILOMAT, 2019, 33 (11) : 3497 - 3508
  • [43] On rings determined by their idempotents and units
    Cetin, Mirac
    Kosan, M. Tamer
    Zemlicka, Jan
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (07) : 2820 - 2829
  • [44] Idempotents in triangular matrix rings
    Hou, Xin
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (02): : 296 - 304
  • [45] LIFTING IDEMPOTENTS AND EXCHANGE RINGS
    NICHOLSON, K
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A708 - A708
  • [46] LIFTING IDEMPOTENTS AND EXCHANGE RINGS
    NICHOLSON, WK
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) : 269 - 278
  • [47] Neutrosophic Boolean Rings
    Chalapathi, T.
    Madhavi, L.
    Neutrosophic Sets and Systems, 2020, 33 : 59 - 66
  • [48] Neutrosophic Boolean Rings
    Chalapathi, T.
    Madhavi, L.
    NEUTROSOPHIC SETS AND SYSTEMS, 2020, 33 : 59 - 66
  • [49] On neutrosophic soft rings
    Bera T.
    Mahapatra N.K.
    OPSEARCH, 2017, 54 (1) : 143 - 167
  • [50] IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS
    Balmaceda, Jose Maria P.
    Datu, Joanne Pauline P.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 1 - 12