Semi-Idempotents in Neutrosophic Rings

被引:2
|
作者
Kandasamy, Vasantha W. B. [1 ]
Kandasamy, Ilanthenral [1 ]
Smarandache, Florentin [2 ]
机构
[1] VIT, Sch Comp Sci & Engn, Vellore 632014, Tamil Nadu, India
[2] Univ New Mexico, Dept Math, 705 Gurley Ave, Gallup, NM 87301 USA
关键词
semi-idempotent; neutrosophic rings; modulo neutrosophic rings; neutrosophic semi-idempotent;
D O I
10.3390/math7060507
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In complex rings or complex fields, the notion of imaginary element i with i2=-1 or the complex number i is included, while, in the neutrosophic rings, the indeterminate element I where I2=I is included. The neutrosophic ring < RI > is also a ring generated by R and I under the operations of R. In this paper we obtain a characterization theorem for a semi-idempotent to be in < ZpI >, the neutrosophic ring of modulo integers, where p a prime. Here, we discuss only about neutrosophic semi-idempotents in these neutrosophic rings. Several interesting properties about them are also derived and some open problems are suggested.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Primitive Idempotents of Schur Rings
    Misseldine, Andrew
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (05) : 1615 - 1634
  • [32] Rings additively generated by their idempotents
    Sharmila
    Hegde, Sharad
    MATERIALS TODAY-PROCEEDINGS, 2022, 54 : 593 - 595
  • [33] EXCHANGE RINGS, UNITS AND IDEMPOTENTS
    CAMILLO, VP
    YU, HP
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) : 4737 - 4749
  • [34] IDEMPOTENTS IN NOETHERIAN GROUP RINGS
    FORMANEK, E
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (02): : 366 - 369
  • [35] On idempotents of a class of commutative rings
    de Melo Hernandez, Fernanda D.
    Hernandez Melo, Cesar A.
    Tapia-Recillas, Horacio
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 4013 - 4026
  • [36] Idempotents in group seminear rings
    Vasantha, Kandasamy, W.B.
    IPB Buletin Stiintific - Mechanical Engineering, 1991, 53 (1-2):
  • [37] RIGHT ALTERNATIVE RINGS WITH IDEMPOTENTS
    HENTZEL, IR
    JOURNAL OF ALGEBRA, 1971, 17 (03) : 303 - &
  • [38] IDEMPOTENTS IN MATRIX-RINGS
    BARNETT, C
    CAMILLO, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (04) : 965 - 969
  • [39] Primitive Idempotents of Schur Rings
    Andrew Misseldine
    Algebras and Representation Theory, 2014, 17 : 1615 - 1634
  • [40] Peirce decompositions, idempotents and rings
    Anh, Pham N.
    Birkenmeier, Gary F.
    van Wyk, Leon
    JOURNAL OF ALGEBRA, 2020, 564 : 247 - 275