Semi-Idempotents in Neutrosophic Rings

被引:2
|
作者
Kandasamy, Vasantha W. B. [1 ]
Kandasamy, Ilanthenral [1 ]
Smarandache, Florentin [2 ]
机构
[1] VIT, Sch Comp Sci & Engn, Vellore 632014, Tamil Nadu, India
[2] Univ New Mexico, Dept Math, 705 Gurley Ave, Gallup, NM 87301 USA
关键词
semi-idempotent; neutrosophic rings; modulo neutrosophic rings; neutrosophic semi-idempotent;
D O I
10.3390/math7060507
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In complex rings or complex fields, the notion of imaginary element i with i2=-1 or the complex number i is included, while, in the neutrosophic rings, the indeterminate element I where I2=I is included. The neutrosophic ring < RI > is also a ring generated by R and I under the operations of R. In this paper we obtain a characterization theorem for a semi-idempotent to be in < ZpI >, the neutrosophic ring of modulo integers, where p a prime. Here, we discuss only about neutrosophic semi-idempotents in these neutrosophic rings. Several interesting properties about them are also derived and some open problems are suggested.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS
    Huang, Juan
    Kwak, Tai Keun
    Lee, Yang
    Piao, Zhelin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1321 - 1334
  • [22] CENTRAL IDEMPOTENTS IN GROUP RINGS
    BURNS, RG
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (04): : 527 - &
  • [23] IDEMPOTENTS IN GROUP-RINGS
    MARCINIAK, ZS
    MATHEMATISCHE ZEITSCHRIFT, 1983, 184 (01) : 19 - 27
  • [24] CHAINS IN SET OF IDEMPOTENTS IN RINGS
    FARES, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (10): : 377 - &
  • [25] Idempotents in representation rings of quivers
    Kinser, Ryan
    Schiffler, Ralf
    ALGEBRA & NUMBER THEORY, 2012, 6 (05) : 967 - 994
  • [26] NeutroAlgebra of Idempotents in Group Rings
    Kandasamy, Vasantha
    Kandasamy, Ilanthenral
    Neutrosophic Sets and Systems, 2022, 50 : 156 - 177
  • [27] ADDITIVE SET OF IDEMPOTENTS IN RINGS
    Han, Juncheol
    Park, Sangwon
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (09) : 3551 - 3557
  • [28] IDEMPOTENTS IN GROUP-RINGS
    WEISS, A
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1980, 16 (02) : 207 - 213
  • [29] CENTRAL IDEMPOTENTS IN GROUP RINGS
    PASSMAN, DS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (02) : 555 - &
  • [30] Idempotents and Ideals of Regular Rings
    Preethi, C. S.
    Jeeja, A., V
    Vinod, S.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (02): : 367 - 376