Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective

被引:16
|
作者
Chandra, Daryus [1 ]
Babar, Zunaira [1 ]
Hung Viet Nguyen [1 ]
Alanis, Dimitrios [1 ]
Botsinis, Panagiotis [1 ]
Ng, Soon Xin [1 ]
Hanzo, Lajos [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
来源
IEEE ACCESS | 2018年 / 6卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Quantum error correction codes; quantum stabilizer codes; quantum topological codes; lattice code; LDPC; MINIMUM DISTANCE; GRAPHS;
D O I
10.1109/ACCESS.2017.2784417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface codes, surface codes, and toric codes are given by 1.8 x 10(-2), 1.3 x 10(-2), 6.3 x 10(-2), and 6.8 x 10(-2), respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface code, and 1/13-rate surface code, respectively.
引用
收藏
页码:13729 / 13757
页数:29
相关论文
共 50 条
  • [41] Nested Quantum Error Correction Codes via Subgraphs
    Yuan Li
    Chunlei Ji
    Mantao Xu
    International Journal of Theoretical Physics, 2014, 53 : 390 - 396
  • [42] Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks
    Cao, ChunJun
    Lackey, Brad
    PRX QUANTUM, 2022, 3 (02):
  • [43] Topological quantum error correction in the Kitaev honeycomb model
    Lee, Yi-Chan
    Brell, Courtney G.
    Flammia, Steven T.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [44] Topological quantum error correction with optimal encoding rate
    Bombin, H.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [45] Quantum error avoiding codes verses quantum error correcting codes
    Duan, LM
    Guo, GC
    PHYSICS LETTERS A, 1999, 255 (4-6) : 209 - 212
  • [46] Methodology for bus layout for topological quantum error correcting codes
    Martin Wosnitzka
    Fabio L Pedrocchi
    David P DiVincenzo
    EPJ Quantum Technology, 3
  • [47] Quantum error avoiding codes verses quantum error correcting codes
    Dept. Phys. and Nonlinear Sci. Ctr., Univ. of Sci. and Technol. of China, Hefei 230026, China
    Phys Lett Sect A Gen At Solid State Phys, 4-6 (209-212):
  • [48] Methodology for bus layout for topological quantum error correcting codes
    Wosnitzka, Martin
    Pedrocchi, Fabio L.
    DiVincenzo, David P.
    EPJ QUANTUM TECHNOLOGY, 2016, 3
  • [49] Continuous quantum error correction as classical hybrid control
    Mabuchi, Hideo
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [50] Error Probability Mitigation in Quantum Reading Using Classical Codes
    Fernandes Pereira, Francisco Revson
    Mancini, Stefano
    ENTROPY, 2022, 24 (01)