Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective

被引:16
|
作者
Chandra, Daryus [1 ]
Babar, Zunaira [1 ]
Hung Viet Nguyen [1 ]
Alanis, Dimitrios [1 ]
Botsinis, Panagiotis [1 ]
Ng, Soon Xin [1 ]
Hanzo, Lajos [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
来源
IEEE ACCESS | 2018年 / 6卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Quantum error correction codes; quantum stabilizer codes; quantum topological codes; lattice code; LDPC; MINIMUM DISTANCE; GRAPHS;
D O I
10.1109/ACCESS.2017.2784417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface codes, surface codes, and toric codes are given by 1.8 x 10(-2), 1.3 x 10(-2), 6.3 x 10(-2), and 6.8 x 10(-2), respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface code, and 1/13-rate surface code, respectively.
引用
收藏
页码:13729 / 13757
页数:29
相关论文
共 50 条
  • [21] Classical-to-quantum non-signalling boxes
    Ferrera, Carolina Moreira
    Simmons, Robin
    Purcell, James
    Collins, Daniel
    Popescu, Sandu
    QUANTUM, 2024, 8
  • [22] Approximate quantum error correction, random codes, and quantum channel capacity
    Klesse, Rochus
    PHYSICAL REVIEW A, 2007, 75 (06):
  • [23] Classical enhancement of quantum-error-correcting codes
    Kremsky, Isaac
    Hsieh, Min-Hsiu
    Brun, Todd A.
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [24] Replica topological order in quantum mixed states and quantum error correction
    Li, Zhuan
    Mong, Roger S. K.
    Physical Review B, 2025, 111 (12)
  • [25] Quantum error correction and quantum computation with detected-jump correcting quantum codes
    Alber, G
    Delgado, A
    Mussinger, M
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2001, 49 (10-11): : 901 - 908
  • [26] One-shot quantum error correction of classical and quantum information
    Nakata, Yoshifumi
    Wakakuwa, Eyuri
    Yamasaki, Hayata
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [27] Classical-to-quantum crossover in electron on-demand emission
    Kashcheyevs, Vyacheslavs
    Samuelsson, Peter
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [28] Classical-to-quantum convolutional neural network transfer learning
    Kim, Juhyeon
    Huh, Joonsuk
    Park, Daniel K.
    NEUROCOMPUTING, 2023, 555
  • [29] Quantum Error-Correction Codes on Abelian Groups
    Amini, Massoud
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2010, 5 (01): : 55 - 67
  • [30] Optimized quantum error-correction codes for experiments
    Nebendahl, V.
    PHYSICAL REVIEW A, 2015, 91 (02):