Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective

被引:16
|
作者
Chandra, Daryus [1 ]
Babar, Zunaira [1 ]
Hung Viet Nguyen [1 ]
Alanis, Dimitrios [1 ]
Botsinis, Panagiotis [1 ]
Ng, Soon Xin [1 ]
Hanzo, Lajos [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
来源
IEEE ACCESS | 2018年 / 6卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Quantum error correction codes; quantum stabilizer codes; quantum topological codes; lattice code; LDPC; MINIMUM DISTANCE; GRAPHS;
D O I
10.1109/ACCESS.2017.2784417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface codes, surface codes, and toric codes are given by 1.8 x 10(-2), 1.3 x 10(-2), 6.3 x 10(-2), and 6.8 x 10(-2), respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface code, and 1/13-rate surface code, respectively.
引用
收藏
页码:13729 / 13757
页数:29
相关论文
共 50 条
  • [31] Nested Quantum Error Correction Codes via Subgraphs
    Li, Yuan
    Ji, Chunlei
    Xu, Mantao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (02) : 390 - 396
  • [32] Decoding Quantum Error Correction Codes With Local Variation
    Hanks M.
    Munro W.J.
    Nemoto K.
    IEEE Transactions on Quantum Engineering, 2020, 1
  • [33] Quantum error correction with degenerate codes for correlated noise
    Chiribella, Giulio
    Dall'Arno, Michele
    D'Ariano, Giacomo Mauro
    Macchiavello, Chiara
    Perinotti, Paolo
    PHYSICAL REVIEW A, 2011, 83 (05):
  • [34] Sparse-graph codes for quantum error correction
    MacKay, DJC
    Mitchison, G
    McFadden, PL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) : 2315 - 2330
  • [35] Quantum error correction architecture for qudit stabilizer codes
    Nadkarni, Priya J.
    Garani, Shayan Srinivasa
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [36] Optimizing Quantum Error Correction Codes with Reinforcement Learning
    Nautrup, Hendrik Poulsen
    Delfosse, Nicolas
    Dunjko, Vedran
    Briegel, Hans J.
    Friis, Nicolai
    QUANTUM, 2019, 3 : 1 - 21
  • [37] Multilevel quantum error correction codes in transform domain
    Guo, Ying
    Huang, Dazu
    Zeng, Guihua
    Lee, Moon Ho
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 594 - +
  • [38] Tapestry of dualities in decohered quantum error correction codes
    Su, Kaixiang
    Yang, Zhou
    Jian, Chao-Ming
    PHYSICAL REVIEW B, 2024, 110 (08)
  • [39] The application of weight parity error correction in quantum codes
    Du, Chao
    Liu, Yiting
    Ma, Zhi
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [40] Digital System Design for Quantum Error Correction Codes
    Khalifa, Othman O.
    Sharif, Nur Amirah bt
    Saeed, Rashid A.
    Abdel-Khalek, S.
    Alharbi, Abdulaziz N.
    Alkathiri, Ali A.
    CONTRAST MEDIA & MOLECULAR IMAGING, 2021, 2021