On Generalization Based on Bi et al. Iterative Methods with Eighth-Order Convergence for Solving Nonlinear Equations

被引:2
|
作者
Lotfi, Taher [1 ]
Cordero, Alicia [2 ]
Torregrosa, Juan R. [2 ]
Abadi, Morteza Amir [1 ]
Zadeh, Maryam Mohammadi [1 ]
机构
[1] Islamic Azad Univ, Hamedan Branch, Dept Appl Math, Hamadan 65188, Iran
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
来源
SCIENTIFIC WORLD JOURNAL | 2014年
关键词
OPTIMAL ORDER; 8TH ORDER; FAMILY;
D O I
10.1155/2014/272949
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it satisfies Kung and Traub's conjecture relevant to construction optimal methods without memory. Moreover, some concrete methods of this class are shown and implemented numerically, showing their applicability and efficiency.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Efficient optimal eighth-order derivative-free methods for nonlinear equations
    Fazlollah Soleymani
    Japan Journal of Industrial and Applied Mathematics, 2013, 30 : 287 - 306
  • [42] A general class of optimal eighth-order derivative free methods for nonlinear equations
    Behl, Ramandeep
    Alshomrani, Ali Saleh
    Chun, Changbum
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (04) : 854 - 867
  • [43] Comparative study of eighth-order methods for finding simple roots of nonlinear equations
    Changbum Chun
    Beny Neta
    Numerical Algorithms, 2017, 74 : 1169 - 1201
  • [44] Efficient optimal eighth-order derivative-free methods for nonlinear equations
    Soleymani, Fazlollah
    Japan Journal of Industrial and Applied Mathematics, 2013, 30 (02): : 287 - 306
  • [45] Semilocal convergence analysis of an eighth order iterative method for solving nonlinear systems
    Wang, Xiaofeng
    Yang, Yufan
    Qin, Yuping
    AIMS MATHEMATICS, 2023, 8 (09): : 22371 - 22384
  • [46] On the local convergence of some iterative processes and higher order methods for solving nonlinear equations
    Radu, L
    Radu, V
    FIXED POINT THEORY AND APPLICATIONS, VOL 2, 2001, : 61 - 72
  • [47] Fourth order iterative methods for solving nonlinear equations
    Comemuang, Chalermwut
    Orosram, Wachirarak
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (01): : 163 - 172
  • [48] CONVERGENCE DOMAINS OF CERTAIN ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS
    CHEN, XJ
    YAMAMOTO, T
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (1-2) : 37 - 48
  • [49] Modified iterative methods with cubic convergence for solving nonlinear equations
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 322 - 325
  • [50] On Iterative Methods with Accelerated Convergence for Solving Systems of Nonlinear Equations
    Ezquerro, J. A.
    Grau-Sanchez, M.
    Grau, A.
    Hernandez, M. A.
    Noguera, M.
    Romero, N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (01) : 163 - 174