On Generalization Based on Bi et al. Iterative Methods with Eighth-Order Convergence for Solving Nonlinear Equations

被引:2
|
作者
Lotfi, Taher [1 ]
Cordero, Alicia [2 ]
Torregrosa, Juan R. [2 ]
Abadi, Morteza Amir [1 ]
Zadeh, Maryam Mohammadi [1 ]
机构
[1] Islamic Azad Univ, Hamedan Branch, Dept Appl Math, Hamadan 65188, Iran
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
来源
SCIENTIFIC WORLD JOURNAL | 2014年
关键词
OPTIMAL ORDER; 8TH ORDER; FAMILY;
D O I
10.1155/2014/272949
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it satisfies Kung and Traub's conjecture relevant to construction optimal methods without memory. Moreover, some concrete methods of this class are shown and implemented numerically, showing their applicability and efficiency.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Three-step iterative methods with optimal eighth-order convergence
    Cordero, Alicia
    Torregrosa, Juan R.
    Vassileva, Maria P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (10) : 3189 - 3194
  • [22] Two new eighth and twelfth order iterative methods for solving nonlinear equations
    Kong-ied, Butsakorn
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01): : 333 - 344
  • [23] An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence
    Behl, Ramandeep
    Alshomrani, Ali Saleh
    Motsa, S. S.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (07) : 2069 - 2084
  • [24] A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations
    Kim, Young Ik
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (08) : 1051 - 1059
  • [25] Efficient Eighth-order Steffensen Type Method for Solving Nonlinear Equations
    Wang, Xiaofeng
    2015 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND INTELLIGENT CONTROL (ISIC 2015), 2015, : 559 - 563
  • [26] An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence
    Ramandeep Behl
    Ali Saleh Alshomrani
    S. S. Motsa
    Journal of Mathematical Chemistry, 2018, 56 : 2069 - 2084
  • [27] Efficient methods of optimal eighth and sixteenth order convergence for solving nonlinear equations
    Sharma J.R.
    Kumar S.
    SeMA Journal, 2018, 75 (2) : 229 - 253
  • [28] The iterative methods with higher order convergence for solving a system of nonlinear equations
    Chen, Zhongyuan
    Qiu, Xiaofang
    Lin, Songbin
    Chen, Baoguo
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3834 - 3842
  • [29] Optimal fourth and eighth-order iterative methods for non-linear equations
    Panday, Sunil
    Sharma, Ashok
    Thangkhenpau, G.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 953 - 971
  • [30] Optimal fourth and eighth-order iterative methods for non-linear equations
    Sunil Panday
    Ashok Sharma
    G. Thangkhenpau
    Journal of Applied Mathematics and Computing, 2023, 69 : 953 - 971