On Generalization Based on Bi et al. Iterative Methods with Eighth-Order Convergence for Solving Nonlinear Equations

被引:2
|
作者
Lotfi, Taher [1 ]
Cordero, Alicia [2 ]
Torregrosa, Juan R. [2 ]
Abadi, Morteza Amir [1 ]
Zadeh, Maryam Mohammadi [1 ]
机构
[1] Islamic Azad Univ, Hamedan Branch, Dept Appl Math, Hamadan 65188, Iran
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
来源
SCIENTIFIC WORLD JOURNAL | 2014年
关键词
OPTIMAL ORDER; 8TH ORDER; FAMILY;
D O I
10.1155/2014/272949
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The primary goal of this work is to provide a general optimal three-step class of iterative methods based on the schemes designed by Bi et al. (2009). Accordingly, it requires four functional evaluations per iteration with eighth-order convergence. Consequently, it satisfies Kung and Traub's conjecture relevant to construction optimal methods without memory. Moreover, some concrete methods of this class are shown and implemented numerically, showing their applicability and efficiency.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions
    Zafar, Fiza
    Cordero, Alicia
    Junjua, Moin-Ud-Din
    Torregrosa, Juan R.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [32] Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions
    Fiza Zafar
    Alicia Cordero
    Moin-Ud-Din Junjua
    Juan R. Torregrosa
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [33] New Iterative Methods With Seventh-Order Convergence For Solving Nonlinear Equations
    Fardi, M.
    Ghasemi, M.
    Davari, A.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2012, 3 (02): : 31 - 37
  • [34] An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics
    Matthies, Gunar
    Salimi, Mehdi
    Sharifi, Somayeh
    Luis Varona, Juan
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2016, 33 (03) : 751 - 766
  • [35] An optimal three-point eighth-order iterative method without memory for solving nonlinear equations with its dynamics
    Gunar Matthies
    Mehdi Salimi
    Somayeh Sharifi
    Juan Luis Varona
    Japan Journal of Industrial and Applied Mathematics, 2016, 33 : 751 - 766
  • [36] An Optimal Family of Eighth-Order Iterative Methods with an Inverse Interpolatory Rational Function Error Corrector for Nonlinear Equations
    Kim, Young I.
    Behl, Ramandeep
    Motsa, Sandile S.
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (03) : 321 - 336
  • [37] Comparative study of eighth-order methods for finding simple roots of nonlinear equations
    Chun, Changbum
    Neta, Beny
    NUMERICAL ALGORITHMS, 2017, 74 (04) : 1169 - 1201
  • [38] A general class of optimal eighth-order derivative free methods for nonlinear equations
    Ramandeep Behl
    Ali Saleh Alshomrani
    Changbum Chun
    Journal of Mathematical Chemistry, 2020, 58 : 854 - 867
  • [39] A General Way to Construct a New Optimal Scheme with Eighth-Order Convergence for Nonlinear Equations
    Behl, Ramandeep
    Chun, Changbum
    Alshormani, Ali Saleh
    Motsa, S. S.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2020, 17 (01)
  • [40] Efficient optimal eighth-order derivative-free methods for nonlinear equations
    Soleymani, Fazlollah
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 30 (02) : 287 - 306