On the Impact of Data Sampling on Hyper-parameter Optimisation of Recommendation Algorithms

被引:2
|
作者
Montanari, Matteo [1 ]
Bernardis, Cesare [1 ]
Cremonesi, Paolo [1 ]
机构
[1] Politecn Milan, Milan, Italy
关键词
Recommender Systems; Optimisation; Hyper-parameter; Sampling;
D O I
10.1145/3477314.3507158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hyper-parameter optimisation (HPO) is a fundamental task that must be performed in order to achieve the highest accuracy performance that a recommendation algorithm can provide. In the recent past, with the the growth of dataset sizes, the amount of resources and time needed to perform the optimisation dramatically increased. Sampling the data used during the HPO procedure allows reducing the required resources, but it impacts the accuracy metric score. In this paper, we study the effects of optimising the hyper-parameters through a random search, sampling the users in a dataset. The results of our experiments show that sampling reduces the amount of time needed to conduct HPO, but it also influences differently the accuracy of the best configuration found by HPO, depending on the algorithm optimised and the dataset selected.
引用
收藏
页码:1399 / 1402
页数:4
相关论文
共 50 条
  • [1] Hyper-parameter Recommendation for Truth Discovery
    Chen, Siying
    Ding, Xiaoou
    Liang, Zheng
    Tang, Yafeng
    Wang, Hongzhi
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT 3, 2025, 14852 : 277 - 292
  • [2] Bayesian Hyper-Parameter Optimisation for Malware Detection
    ALGorain, Fahad T.
    Clark, John A.
    ELECTRONICS, 2022, 11 (10)
  • [3] Hyper-parameter Optimisation by Restrained Stochastic Hill Climbing
    Stubbs, Rhys
    Wilson, Kevin
    Rostami, Shahin
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI 2019), 2020, 1043 : 189 - 200
  • [4] Hyper-parameter Optimization Using Continuation Algorithms
    Rojas-Delgado, Jairo
    Jimenez, J. A.
    Bello, Rafael
    Lozano, J. A.
    METAHEURISTICS, MIC 2022, 2023, 13838 : 365 - 377
  • [5] Effects of Random Sampling on SVM Hyper-parameter Tuning
    Horvath, Tomas
    Mantovani, Rafael G.
    de Carvalho, Andre C. P. L. F.
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2016), 2017, 557 : 268 - 278
  • [6] ParDen: Surrogate Assisted Hyper-Parameter Optimisation for Portfolio Selection
    van Zyl, T. L.
    Woolway, M.
    Paskaramoorthy, A.
    2021 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2021), 2021, : 101 - 107
  • [7] Gradient based hyper-parameter optimisation for well conditioned kriging metamodels
    Jonathan Ollar
    Charles Mortished
    Royston Jones
    Johann Sienz
    Vassili Toropov
    Structural and Multidisciplinary Optimization, 2017, 55 : 2029 - 2044
  • [8] MAP-INFORMED UNROLLED ALGORITHMS FOR HYPER-PARAMETER ESTIMATION
    Nguyen, Pascal
    Soubies, Emmanuel
    Chaux, Caroline
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2160 - 2164
  • [9] Gradient based hyper-parameter optimisation for well conditioned kriging metamodels
    Ollar, Jonathan
    Mortished, Charles
    Jones, Royston
    Sienz, Johann
    Toropov, Vassili
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (06) : 2029 - 2044
  • [10] Hyper-parameter Tuning using Genetic Algorithms for Software Effort Estimation
    Villalobos-Arias, Leonardo
    Quesada-Lopez, Christian
    Jenkins, Marcelo
    Murillo-Morera, Juan
    PROCEEDINGS OF 2021 16TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2021), 2021,