DIMENSIONAL IMPROVEMENTS OF THE LOGARITHMIC SOBOLEV, TALAGRAND AND BRASCAMP-LIEB INEQUALITIES

被引:21
|
作者
Bolley, Francois [1 ]
Gentil, Ivan [2 ]
Guillin, Arnaud [3 ]
机构
[1] Univ Paris 06, CNRS, Lab Probabil & Modeles Aleatoires, UMR 7599, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, UMR 5208,CNRS, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[3] Univ Clermont Auvergne, CNRS, Lab Math, UMR 6620, Ave Landais, F-63177 Aubiere, France
来源
ANNALS OF PROBABILITY | 2018年 / 46卷 / 01期
关键词
Logarithmic Sobolev inequality; Talagrand inequality; Brascamp-Lieb inequality; Fokker-Planck equations; optimal transport; HAMILTON-JACOBI EQUATIONS; BRUNN-MINKOWSKI; GRADIENT FLOWS; MASS-TRANSPORT; HYPERCONTRACTIVITY; DISTANCE; SPACES;
D O I
10.1214/17-AOP1184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this, we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic differential equations.
引用
收藏
页码:261 / 301
页数:41
相关论文
共 50 条
  • [21] Optimisers for the Brascamp-Lieb inequality
    Valdimarsson, Stefan Ingi
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 168 (01) : 253 - 274
  • [22] Remarks on Gaussian Noise Stability, Brascamp-Lieb and Slepian Inequalities
    Ledoux, Michel
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 : 309 - 333
  • [23] Dynamic approach to a stochastic domination: The FKG and Brascamp-Lieb inequalities
    Funaki, Tadahisa
    Toukairin, Kou
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) : 1915 - 1922
  • [24] ON THE NONLINEAR BRASCAMP-LIEB INEQUALITY
    Bennett, Jonathan
    Bez, Neal
    Buschenhenke, Stefan
    Cowling, Michael G.
    Flock, Taryn C.
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (17) : 3291 - 3338
  • [25] Optimisers for the Brascamp-Lieb inequality
    Stefán Ingi Valdimarsson
    Israel Journal of Mathematics, 2008, 168 : 253 - 274
  • [26] Behaviour of the Brascamp-Lieb constant
    Bennett, Jonathan
    Bez, Neal
    Cowling, Michael G.
    Flock, Taryn C.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (03) : 512 - 518
  • [27] Dimensional variance inequalities of Brascamp-Lieb type and a local approach to dimensional Prekopa's theorem
    Van Hoang Nguyen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (02) : 931 - 955
  • [28] Smoothing Brascamp-Lieb Inequalities and Strong Converses of Coding Theorems
    Liu, Jingbo
    Courtade, Thomas A.
    Cuff, Paul
    Verdu, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 704 - 721
  • [29] Some nonlinear Brascamp-Lieb inequalities and applications to harmonic analysis
    Bennett, Jonathan
    Bez, Neal
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (10) : 2520 - 2556
  • [30] SUBADDITIVITY OF THE ENTROPY AND ITS RELATION TO BRASCAMP-LIEB TYPE INEQUALITIES
    Carlen, Eric A.
    Cordero-Erausquin, Dario
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (02) : 373 - 405