DIMENSIONAL IMPROVEMENTS OF THE LOGARITHMIC SOBOLEV, TALAGRAND AND BRASCAMP-LIEB INEQUALITIES

被引:21
|
作者
Bolley, Francois [1 ]
Gentil, Ivan [2 ]
Guillin, Arnaud [3 ]
机构
[1] Univ Paris 06, CNRS, Lab Probabil & Modeles Aleatoires, UMR 7599, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan, UMR 5208,CNRS, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[3] Univ Clermont Auvergne, CNRS, Lab Math, UMR 6620, Ave Landais, F-63177 Aubiere, France
来源
ANNALS OF PROBABILITY | 2018年 / 46卷 / 01期
关键词
Logarithmic Sobolev inequality; Talagrand inequality; Brascamp-Lieb inequality; Fokker-Planck equations; optimal transport; HAMILTON-JACOBI EQUATIONS; BRUNN-MINKOWSKI; GRADIENT FLOWS; MASS-TRANSPORT; HYPERCONTRACTIVITY; DISTANCE; SPACES;
D O I
10.1214/17-AOP1184
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work, we consider dimensional improvements of the logarithmic Sobolev, Talagrand and Brascamp-Lieb inequalities. For this, we use optimal transport methods and the Borell-Brascamp-Lieb inequality. These refinements can be written as a deficit in the classical inequalities. They have the right scale with respect to the dimension. They lead to sharpened concentration properties as well as refined contraction bounds, convergence to equilibrium and short time behavior for the laws of solutions to stochastic differential equations.
引用
收藏
页码:261 / 301
页数:41
相关论文
共 50 条
  • [31] Fourier duality in the Brascamp-Lieb inequality
    Bennett, Jonathan
    Jeong, Eunhee
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (02) : 387 - 409
  • [32] On stochastic domination in the Brascamp-Lieb framework
    Giacomin, G
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 507 - 514
  • [33] Quantum Brascamp-Lieb Dualities
    Berta, Mario
    Sutter, David
    Walter, Michael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (02) : 1807 - 1830
  • [34] An Algebraic Brascamp-Lieb Inequality
    Duncan, Jennifer
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 10136 - 10163
  • [35] Intertwinings, second-order Brascamp-Lieb inequalities and spectral estimates
    Bonnefont, Michel
    Joulin, Alderic
    STUDIA MATHEMATICA, 2021, 260 (03) : 285 - 316
  • [36] Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling
    Ankit Garg
    Leonid Gurvits
    Rafael Oliveira
    Avi Wigderson
    Geometric and Functional Analysis, 2018, 28 : 100 - 145
  • [37] A Brascamp-Lieb type covariance estimate
    Menz, Georg
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [38] Convolution estimates for singular measures and some global nonlinear Brascamp-Lieb inequalities
    Koch, Herbert
    Steinerberger, Stefan
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (06) : 1223 - 1237
  • [39] Smoothing Brascamp-Lieb Inequalities and Strong Converses for Common Randomness Generation
    Liu, Jingbo
    Courtade, Thomas A.
    Cuff, Paul
    Verdu, Sergio
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1043 - 1047
  • [40] Algorithmic and Optimization Aspects of Brascamp-Lieb Inequalities, via Operator Scaling
    Garg, Ankit
    Gurvits, Leonid
    Oliveira, Rafael
    Wigderson, Avi
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 397 - 409