Behaviour of the Brascamp-Lieb constant

被引:19
|
作者
Bennett, Jonathan [1 ]
Bez, Neal [2 ]
Cowling, Michael G. [3 ]
Flock, Taryn C. [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Saitama Univ, Dept Math, Grad Sch Sci & Engn, Saitama 3388570, Japan
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 欧洲研究理事会;
关键词
26D20 (primary); 44A35; 42B10 (secondary); SINGULAR MEASURES; INEQUALITIES;
D O I
10.1112/blms.12049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent progress in multilinear harmonic analysis naturally raises questions about the local behaviour of the best constant (or bound) in the general Brascamp-Lieb inequality as a function of the underlying linear transformations. In this paper we prove that this constant is continuous, but is not in general differentiable.
引用
收藏
页码:512 / 518
页数:7
相关论文
共 50 条
  • [1] STABILITY OF THE BRASCAMP-LIEB CONSTANT AND APPLICATIONS
    Bennett, Jonathan
    Bez, Neal
    Flock, Taryn C.
    Lee, Sanghyuk
    AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (02) : 543 - 569
  • [2] The Brascamp-Lieb Polyhedron
    Valdimarsson, Stefan Ingi
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (04): : 870 - 888
  • [3] Geometric Brascamp-Lieb Has the Optimal Best Constant
    Valdimarsson, Stefan Ingi
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (04) : 1036 - 1043
  • [4] Optimisers for the Brascamp-Lieb inequality
    Valdimarsson, Stefan Ingi
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 168 (01) : 253 - 274
  • [5] Adjoint Brascamp-Lieb inequalities
    Bennett, Jonathan
    Tao, Terence
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2024, 129 (04)
  • [6] ON THE NONLINEAR BRASCAMP-LIEB INEQUALITY
    Bennett, Jonathan
    Bez, Neal
    Buschenhenke, Stefan
    Cowling, Michael G.
    Flock, Taryn C.
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (17) : 3291 - 3338
  • [7] Optimisers for the Brascamp-Lieb inequality
    Stefán Ingi Valdimarsson
    Israel Journal of Mathematics, 2008, 168 : 253 - 274
  • [8] QUIVER BRASCAMP-LIEB INEQUALITIES
    Hu, Nicholas
    PACIFIC JOURNAL OF MATHEMATICS, 2024, 333 (01)
  • [9] Fourier duality in the Brascamp-Lieb inequality
    Bennett, Jonathan
    Jeong, Eunhee
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2022, 173 (02) : 387 - 409
  • [10] On stochastic domination in the Brascamp-Lieb framework
    Giacomin, G
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 134 : 507 - 514