Negative norm stabilization of convection-diffusion problems

被引:12
|
作者
Bertoluzza, S
Canuto, C
Tabacco, A
机构
[1] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
singularly perturbed problems; convection-diffusion problems; stabilized Galerkin methods; multiscale decompositions; wavelets;
D O I
10.1016/S0893-9659(99)00221-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model convection-diffusion problem in the convection-dominated regime. A functional setting is given for stabilized Galerkin approximations, in which the stabilizing terms are based on inner products of the type H-1/2. These are explicitly computable via multiscale decompositions such as hierarchic al finite elements or wavelets (while classical SUPG or Galerkin/least-squares methods mimic their effect through discrete element-by-element weighted L-2-inner products). (C) 2000 Elsevier Science Ltd. Ail rights reserved.
引用
收藏
页码:121 / 127
页数:7
相关论文
共 50 条
  • [41] A fractional step θ-method for convection-diffusion problems
    Chrispell, J. C.
    Ervin, V. J.
    Jenkins, E. W.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 204 - 218
  • [42] Solution of convection-diffusion problems with the memory terms
    Kacur, J
    COMPUTATIONAL METHODS FOR FLOW AND TRANSPORT IN POROUS MEDIA, 2000, 17 : 93 - 106
  • [43] An adaptive multigrid strategy for convection-diffusion problems
    Vasileva, D
    Kuut, A
    Hemker, PW
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 138 - 145
  • [44] THE CHARACTERISTIC METHOD FOR THE STATIONS CONVECTION-DIFFUSION PROBLEMS
    BERMUDEZ, A
    DURANY, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (01): : 7 - 26
  • [45] AD-FDSD for convection-diffusion problems
    Zhang, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) : 257 - 271
  • [46] SUPERCONVERGENCE FOR CONVECTION-DIFFUSION PROBLEMS WITH LOW REGULARITY
    Ludwig, Lars
    Roos, Hans-Goerg
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 173 - 187
  • [47] Modified exponential schemes for convection-diffusion problems
    Luo, C.
    Dlugogorski, B. Z.
    Moghtaderi, B.
    Kennedy, E. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) : 369 - 379
  • [48] Alternating triangular schemes for convection-diffusion problems
    Vabishchevich, P. N.
    Zakharov, P. E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 576 - 592
  • [49] Finite volume methods for convection-diffusion problems
    Lazarov, RD
    Mishev, ID
    Vassilevski, PS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 31 - 55
  • [50] H-matrices for convection-diffusion problems with constant convection
    Le Borne, S
    COMPUTING, 2003, 70 (03) : 261 - 274