Negative norm stabilization of convection-diffusion problems

被引:12
|
作者
Bertoluzza, S
Canuto, C
Tabacco, A
机构
[1] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
singularly perturbed problems; convection-diffusion problems; stabilized Galerkin methods; multiscale decompositions; wavelets;
D O I
10.1016/S0893-9659(99)00221-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model convection-diffusion problem in the convection-dominated regime. A functional setting is given for stabilized Galerkin approximations, in which the stabilizing terms are based on inner products of the type H-1/2. These are explicitly computable via multiscale decompositions such as hierarchic al finite elements or wavelets (while classical SUPG or Galerkin/least-squares methods mimic their effect through discrete element-by-element weighted L-2-inner products). (C) 2000 Elsevier Science Ltd. Ail rights reserved.
引用
收藏
页码:121 / 127
页数:7
相关论文
共 50 条
  • [21] Schwarz methods for convection-diffusion problems
    MacMullen, H
    O'Riordan, E
    Shishkin, GI
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 544 - 551
  • [22] An Initial Value Technique for Singularly Perturbed Convection-Diffusion Problems with a Negative Shift
    Subburayan, V.
    Ramanujam, N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (01) : 234 - 250
  • [23] Modified streamline diffusion schemes for convection-diffusion problems
    Shih, YT
    Elman, HC
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 174 (1-2) : 137 - 151
  • [24] THE CHARACTERISTIC STREAMLINE DIFFUSION METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    HANSBO, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 96 (02) : 239 - 253
  • [25] Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions
    Matthies, Gunar
    Skrzypacz, Piotr
    Tobiska, Lutz
    Electronic Transactions on Numerical Analysis, 2008, 32 : 90 - 105
  • [26] Supercloseness of edge stabilization on Shishkin rectangular meshes for convection-diffusion problems with exponential layers
    Liu, Xiaowei
    Stynes, Martin
    Zhang, Jin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 2105 - 2122
  • [27] STABILIZATION OF LOCAL PROJECTION TYPE APPLIED TO CONVECTION-DIFFUSION PROBLEMS WITH MIXED BOUNDARY CONDITIONS
    Matthies, Gunar
    Skrzypacz, Piotr
    Tobiska, Lutz
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 32 : 90 - 105
  • [28] On the Choice of Parameters in Stabilization Methods for Convection-Diffusion Equations
    John, V.
    Knobloch, P.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 297 - +
  • [29] HDG schemes for stationary convection-diffusion problems
    Dautov, R. Z.
    Fedotov, E. M.
    11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS, 2016, 158