Negative norm stabilization of convection-diffusion problems

被引:12
|
作者
Bertoluzza, S
Canuto, C
Tabacco, A
机构
[1] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
singularly perturbed problems; convection-diffusion problems; stabilized Galerkin methods; multiscale decompositions; wavelets;
D O I
10.1016/S0893-9659(99)00221-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model convection-diffusion problem in the convection-dominated regime. A functional setting is given for stabilized Galerkin approximations, in which the stabilizing terms are based on inner products of the type H-1/2. These are explicitly computable via multiscale decompositions such as hierarchic al finite elements or wavelets (while classical SUPG or Galerkin/least-squares methods mimic their effect through discrete element-by-element weighted L-2-inner products). (C) 2000 Elsevier Science Ltd. Ail rights reserved.
引用
收藏
页码:121 / 127
页数:7
相关论文
共 50 条
  • [31] Solution decompositions for linear convection-diffusion problems
    Linss, T
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2002, 21 (01): : 209 - 214
  • [32] A hybrid multigrid method for convection-diffusion problems
    Khelifi, S. Chaabane
    Mechitoua, N.
    Huelsemann, F.
    Magoules, F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 711 - 719
  • [33] ANALYSIS OF THE DGFEM FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Feistauer, Miloslav
    Kucera, Vaclav
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 32 : 33 - 48
  • [34] Boundary knot method for convection-diffusion problems
    Muzik, Juraj
    XXIV R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (24RSP) (TFOCE 2015), 2015, 111 : 582 - 588
  • [35] Analysis of the DGFEM for nonlinear convection-diffusion problems
    Charles University Prague, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic
    Electron. Trans. Numer. Anal., 2008, (33-48):
  • [36] Unconditionally Stable Schemes for Convection-Diffusion Problems
    Afanas'eva, N. M.
    Vabishchevich, P. N.
    Vasil'eva, M. V.
    RUSSIAN MATHEMATICS, 2013, 57 (03) : 1 - 11
  • [37] SOME INVERSE PROBLEMS FOR CONVECTION-DIFFUSION EQUATIONS
    Pyatkov, S. G.
    Safonov, E. I.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (04): : 36 - 50
  • [38] On uniqueness techniques for degenerate convection-diffusion problems
    Andreianov, Boris
    Igbida, Noureddine
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2012, 4 (1-2) : 3 - 34
  • [39] THE MORTAR ELEMENT METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    ACHDOU, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (01): : 117 - 123
  • [40] Solution of convection-diffusion problems with the memory terms
    Kacur, J
    APPLIED NONLINEAR ANALYSIS, 1999, : 199 - 212