Negative norm stabilization of convection-diffusion problems

被引:12
|
作者
Bertoluzza, S
Canuto, C
Tabacco, A
机构
[1] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
singularly perturbed problems; convection-diffusion problems; stabilized Galerkin methods; multiscale decompositions; wavelets;
D O I
10.1016/S0893-9659(99)00221-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model convection-diffusion problem in the convection-dominated regime. A functional setting is given for stabilized Galerkin approximations, in which the stabilizing terms are based on inner products of the type H-1/2. These are explicitly computable via multiscale decompositions such as hierarchic al finite elements or wavelets (while classical SUPG or Galerkin/least-squares methods mimic their effect through discrete element-by-element weighted L-2-inner products). (C) 2000 Elsevier Science Ltd. Ail rights reserved.
引用
收藏
页码:121 / 127
页数:7
相关论文
共 50 条