Note on injective edge-coloring of graphs

被引:17
|
作者
Miao, Zhengke [1 ]
Song, Yimin [2 ]
Yu, Gexin [3 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei, Peoples R China
[3] William & Mary, Dept Math, Williamsburg, VA USA
关键词
Injective edge-coloring; k-degenerate graphs; Maximum average degree; STRONG CHROMATIC INDEX;
D O I
10.1016/j.dam.2021.12.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An injective edge-coloring of graph G is an edge-coloring phi such that phi(e(1)) not equal (e(3)) for any three consecutive edges e(1), e(2) and e(3) of a path or a 3-cycle. Note that such an edge-coloring is not necessarily proper. The minimum number of colors required for an injective edge-coloring is called the injective chromatic index of G, denoted by chi(i)'(G). For every integer k >= 2, we show that every k-degenerate graph G with maximum degree Delta satisfies chi(i)'(G) <= (4k- 3)Delta - 2k(2) - k+3. We also prove that every graph G with Delta = 4, it is injective 9-edge-colorable when its maximum average degree mad(G) < 14/5, injective 10-edge-colorable when mad(G) < 3, injective 11-edge-colorable when mad(G) < 19/6, and injective 12-edge-colorable when mad(G) < 36/11. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
  • [41] Facial packing edge-coloring of plane graphs
    Czap, Julius
    Jendrol, Stanislav
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 71 - 75
  • [42] Strong edge-coloring for cubic Hahn graphs
    Chang, Gerard Jennhwa
    Liu, Daphne Der-Fen
    DISCRETE MATHEMATICS, 2012, 312 (08) : 1468 - 1475
  • [43] Edge-Coloring Vertex-Weighting of Graphs
    Shiu, Wai-Chee
    Lau, Gee-Choon
    Ng, Ho-Kuen
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2021, 16 (01): : 1 - 13
  • [44] On the vertex distinguishing equitable edge-coloring of graphs
    Zhang, Zhong-fu
    Li, Mu-chun
    Yao, Bing
    Xu, Bo-gen
    Wang, Zhi-wen
    Li, Jing-wen
    ARS COMBINATORIA, 2008, 86 : 193 - 200
  • [45] EFFICIENT VERTEX-COLORING AND EDGE-COLORING OF OUTERPLANAR GRAPHS
    PROSKUROWSKI, A
    SYSLO, MM
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (01): : 131 - 136
  • [46] Facial Rainbow Edge-Coloring of Plane Graphs
    Stanislav Jendrol’
    Graphs and Combinatorics, 2018, 34 : 669 - 676
  • [47] LIST STAR EDGE-COLORING OF SUBCUBIC GRAPHS
    Kerdjoudj, Samia
    Kostochka, Alexandr
    Raspaud, Andre
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 1037 - 1054
  • [48] Locally irregular edge-coloring of subcubic graphs
    Luzar, Borut
    Macekova, Maria
    Rindosova, Simona
    Sotak, Roman
    Srokova, Katarina
    Storgel, Kenny
    DISCRETE APPLIED MATHEMATICS, 2023, 339 : 136 - 148
  • [49] Facial Rainbow Edge-Coloring of Plane Graphs
    Jendrol, Stanislav
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 669 - 676
  • [50] Recent progress on strong edge-coloring of graphs
    Deng, Kecai
    Yu, Gexin
    Zhou, Xiangqian
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)